Olimpiada Nationald de Informaticd, Etapa Nationald
Proba 1 de baraj
Descrierea Solutiilor

Comisia Stiintifici

26 aprilie 2024

Problema 1: Graba

Vom codifica o instructiune de forma if (x; == y) return zcatripletul (7, y, 2). Setul {1,..., 7} il vom
notacu [#].

Observatie 1. Dacd existd solutie, atunci existi un j € [N, y, z astfel incit, pentru oricare i € [M] cu
A,-j = yavemcd A; N1 = 2.

Demonstragie. S considerim orice solutie validi la problemi. Aceasta trebuie si inceapi cu un triplet (7, y, 2)
oarecare (exceptind cazul trivial cind matricea din input nu are niciun element). Observim ci pentru ca solutia
sd fie corectd, oricare input care are 4;; = y trebuie sd aibd A4; 11 = 7 — cdci altfel, solutia ar afisa z pentru
inputul 7, in loc de 4; n41 # 2. m]

Grafic, valorile din matricea A arati asa; cu culoarea rosie este marcat elementul y, si cu culoarea albastri este
marcat elementul 2. Zona hasurati cu albastru contine elemente ce pot sau nu fi 2.

Observatie 2. Dacd existi un j € [N, y,z astfel incat, pentru oricare i € [M] cu A;jj = y avem cd
A N+1 = 2, atunci o solutie validd este urmdtoarea: prima operatie este (j, ¥, 2); restul operatiilor sunt acelea ce
ar fi afisate pentru matricea A', care contine doar randurile 7 din 4 cu 4;; # y.

Demonstragie. Oricare dintre inputurile 7 cu 4;; = y sunt rezolvate corect de prima operatie; restul sunt rezol-
vate corect de restul operatiilor (cici am presupus ca operatiile rimase sunt o solutie validi pentru submatricea

A'). O

Asadar, rezultd ci urmitoarea este o solutie corecti (dar ineficientd) pentru problema:

1. Cat timp matricea A nu este goald, repetim urmatorii pasi.
2. Ciutimun j € [N], y, z astfel incit, pentru oricare 7 € M cu 4;; = y avem ci 4; N+1 = 2.
3. Daci acest element nu existd, atunci conform Observatiei 2, nu existd solutie, deci putem afisa —1.

4. Daci acest element existd, aplicim operatia (7, ¥, 2), eliminim toate liniile 7 cu Aij = y, si ne intoarcem
la primul pas.

O solutie O (NN M) implementati naiv cu hash-uri (folosind de exemplu unordered_map din STL) ar trebui
sd obtina 81 sau 100 de puncte in functie de detaliile implementarii. Aceste structuri de date au complexitate
teoreticd foarte bund, dar in practicd se comportd mai slab decit structuri mai primitive care sunt stocate intr-un
mod mai compact in memorie.

Vom descrie acum o metodi eficientd de a implementa acest algoritm. Vom crea un arbore inrddicinat cu
urmadtoarea structura:

1. Arborele are o ridicini.
2. Copiii ridacinii reprezintd coloanele matricii.
3. Si considerim un nod ce reprezinti coloana j. Acest nod are un copil pentru fiecare valoare x = 4 ij-

4. Si considerim un nod ce reprezinti valoarea x, copilul nodului ce reprezinti coloana ;. Acesta are un
copil pentru fiecare valoare y = A; n+1, pentru acele valori 7 unde 4 ij = X.

5. Pentru un nod ce reprezinti valoarea y, copilul nodului ce reprezinti valoarea x, copilul nodului ce
reprezinti coloana 7, vom avea un copil pentru fiecare 7 unde 4 ij = %, ANy = .

Fie ¢ oricare nod de pe nivelul 3 cu exact un singur copil. Lantul de la ridicini la (unicul sdu) copil reprezinti
tripletul (7, ¥, 2) pe care il vrem; mai mult frunzele din subarborele lui reprezinti acele linii din matrice ce vrem
s le eliminim. Asadar, mentinem acest arbore, eliminind frunzele ce corespund liniilor eliminate. Atunci cind
eliminim o frunzi, eliminim si parintii sii recursiv daci este nevoie; putem observa atunci cind un nod de pe
nivelul 3 are exact un fiu, si si il adidugim la acel moment la o coadi, marcind-ul pentru eliminare ulterioari.

Complexitatea solutiei este O (N M).

Implementare alternativi

Pe fiecare coloand ; si pentru fiecare valoare distincti de pe acea coloana, credm o listd dublu inlintuiti. Concret,
fiecare pozitie 4; ; contine indicii liniilor anterioard 7 §i urmatoare 7" pentru care 4;,; = Ay ; = Ay ;.
Acum, daci exista o listd de valori x pe coloana j pentru care toate valorile corespunzatoare y de pe coloana
N + 1 sint egale, atunci putem emite conditia

if (x; == x) return y;

Apoi putem sterge din evidenti toate liniile din lista gisiti. Numim o astfel de listd bund. Vom mentine o coad
de liste bune. Initializim coada cu listele care sint bune de la inceput. Pe misuri ce eliminim linii, din liste vor
incepe si dispard elemente. Unele liste, care initial corespundeau la valori y multiple, pot deveni bune prin
stergerea elementelor, caz in care le adiugim la coadi. Daci coada devine goald inainte s eliminim toate liniile,
atunci testul nu are solutie.

Pentru a mentine eficient informatia daci o listd este bund, stocim numirul de discrepante intre valorile y
corespunzitoare. Mai exact, pentru fiecare listi stocim numirul de perechi de pozitii consecutive care corespund
la valori y diferite. Numirul de discrepante poate scidea cu 1 la disparitia unui element din listd i putem
intretine valoarea curentd in O(1). Cind numairul de discrepante ajunge la 0, inseamna ci lista a devenit buna.

Restul implementirii cere o gestiune corectd a pointerilor. Bundoari, este posibil ca o listi si se afle in coada de
liste bune, dar si devini vida inainte si-i vina rindul (prin eliminarea tuturor liniilor pe care le acoperea).

Problema 2: Perm

Solutia 1 (2 puncte)

Numirul minim de interschimbari pentru un interval [, y] in acest caz este egal cu y — x, deoarece mereu
putem obtine ciclul x + 1, x + 2, ..., y, x in y — x interschimbiri.

Solutia 2 (11 puncte)

Numirul minim de interschimbiri pentru un interval [, y] de care avem nevoie este suma dintre:

* numirul de cicli complet inclusi in intervalul [x, y] —1, sau 0 daci nu avem niciun ciclu
* numirul de elemente strict mai mici decit x din intervalul [x, y]

* numirul de elemente strict mai mari decit y din intervalul [x, y].

De ce? Presupunind ci am avea doi cicli, am avea nevoie doar de o singuri interschimbare pentru a obtine un
ciclu. Astfel pentrua uni X cicli intre ei, am avea nevoie de K — 1 interschimbiri. Atunci cind avem un element
mai mic decit x, respectiv mai mare decit y, e clar cd avem nevoie de o interschimbare ca si il scoatem din
interval. Observim ci mereu putem alege aceste interschimbiri astfel incit cu elementele din afari si obtinem
un singur ciclu.

In acest subtask este suficient si gisim pentru intervalul specificat numirul de cicli si elemente care nu sunt in
intervalul [x, y] in O(I\), aceasta fiind §i complexitatea doriti.

Solutia 3 (9 puncte)
Generim toate combinatiile de interschimbiri posibile.

Complexitate O(Q - 2N'(N—l)/2)

Solutia 4 (18 puncte)

Toate query-urile fiind pe prefixe putem si le sortim crescitor dupi y, si si tinem o Padure de multimi
disjuncte pentru a contoriza numirul de ciclii. Numirul de elemente mai mari decit y sunt usor de aflat.

Complexitate O(N -log N)

Solutia 5 (80 puncte)

Putem folosi algoritmul lui Mo. Impértim fictiv permutarea in blocuri de litime VN Ordondm interogirile
dupi blocul lui x, iar ca departajare dupa y (pentru un bonus de vitezi, putem ordona y-ii crescitor in blocurile
impare si descrescitor in blocurile pare). Acum mentinem informatii despre intervalul curent [x,], informatii
pe care le putem actualiza in O(1) cind extindem sau contractim intervalul curent cu o pozitie. Atunci efortul

total al actualizirilor este O((Q + N) VN).

Informatiile necesare sint (1) numarul de cicluri continute in intervalul curent §i (2) numdrul de languri continute
in intervalul curent. Pentru (1), precalculim pentru fiecare ciclu extremele sale stinga s si dreapta d i, intr-
un vector global v asignim v[s] = d si v[d] = 5. Cu vectorul v putem determina daci la extinderea sau la
contractarea intervalului curent inglobim sau pierdem un ciclu.

Pentru (2), exprimim numdirul de lanturi ca numirul de pozitii 7 pentru care p[7] este in afara intervalului
curent, deoarece fiecare astfel de pozitie indicd un capit de lant. Fie 2 pozitia care intri sau iese din interval.
Trebuie si vedem daci p[z] este sau nu in interval si daci pozitia ¢ pentru care p[¢] = z este sau nu in interval.
Tau nagstere citeva if-uri simple.

Complexitate O((N + Q) - VN)

Solutia 6 (100 puncte)
Ordonim query-urile crescitor dupi x.

Pentru a numdra ciclii inclusi intr-un interval [x, y], putem privi un ciclu care are cel mai din stinga element
pe pozitia i cel mai din dreapta element pe pozitia & ca pe un interval [4, b]. Astfel reducem problema la:
avem maxim N intervale si trebuie si rispundem la Q query-uri de forma [x, y] - cite intervale sunt incluse in
[, y]. Pentru a face asta, spunem ci un interval [, 6] este activ cit timp x-ul dintr-un query este mai mic sau
egal decit 4, deci pentru un query trebuie doar si numdrim cite intervale active au capitul dreapta mai mic
sau egal decit y, ceea ce putem face usor cu un Arbore de intervalesauunArbore indexat binar.
Tncepem cu toate intervalele active, si, evident, ne folosim de faptul ci query-urile sunt sortate crescitor dupi x
pentru a dezactiva intervalele o singuri dati.

Pentru a numira elementele care nu au valori incluse in intervalul [x, y], putem trata cazul in care numirim
elementele mai mici decit x, celilalt fiind echivalent. Similar cu solutia pentru ciclii, spunem ci o valoare
este activi dacd este mai mici decit x. Fiecare query [, y] se reduce la a afla cite valori active sunt in acest
interval, ceea ce putem aflacuun Arbore de intervalesauun Arbore indexat binar. Tncepem cu
toate valorile inactive, iar cum x poate doar si creasci, activim mereu valorile mai mici decit x care nu au fost
incd active.

Complexitate O((Q + IN) - log V)

Problema 3: Redpanda

In problema aceasta ni se di un arbore 4 cu 7 noduri, cu ridicini, si ni se cere si eliminim apoi si adiugim
alternativ muchii astfel incat la final si ne dea un arbore cu addncimea maxim £. (Adincimea este definiti ca
lungimea lantului cel mai lung de la ridicini la o frunzi — aceasta este mai mici cu 1 decit nivelul definit in
problemi.) Se doreste gisirea numarului minim de operatii.

Mai intii definim o notiune utild. Pentru un arbore X, definim centru(X) ca fiind un varf al lui X care
minimizeazi cea mai mare distanti la un nod oarecare din X . In alte cuvinte,

centru(X) = arg min max dist(x, y).
x Y

Nodul centru(X) este nodul cel mai apropiat de centrul unui lant diametral din arbore. (Adica, daci varfurile
(a, b) determini diametrul arborelui, atunci centru(X) este fie la mijlocul lantului dintre ele, sau unul dintre
nodurile cit mai aproape de acel mijloc daci lantul este de lungime impari. In cazul impar, nodul ales este
arbitrar.) Observim ci putem gisi centru(X) in timp linear folosind 3 DFS-uri: doui pentru a gisi diametrul,
si al treilea pentru a gisi nodul din mijlocul langului diametral.

Observatie 3. Existd o solutie care mereu dupd ce taie o muchie, separénd subarborele A" de riddcind, ea niciodatd
nu va tdia o muchie din A" din nou, san muchia addugata.

Demonstragie. Niciodatd o solutie optimi nu va elimina o muchie ce a adiugat-o, cici ea ar fi putut adiuga de
la inceput muchia aceea. Altfel, daci prima operatie separd un subarbore 4" de ridicina, si apoi taie cevain 4",
operatiile pot fi reordonate astfel incit muchia tiiatd din 4" si fie tiiatd primi.]

Observatie 4. Intr-osolutie, dacd se taie o muchie ce separi pe A’ e riddcind, si apoi niciodatd nu se taie nimic din
A’ sau muchia addingatd, atunci este optim sd legam pe centru(A") de riddcind. Asadar este necesar si suficient
ca diametrul lui A’ sd fie cel mult 2(k — 1).

Demonstratie. Din definitie, centru(4”) minimizeazi distanta maxima de la el la oricare nod al lui 4" deci este
cel mai avantajos nod de care si ne legim. Mai mult, pentru a avea adincimea finali cel mult £, distanta de la
centru la oricare nod (adici [diametru/2]) trebuie si fie cel mult £ — 1; deci diametrul trebuie si fie cel mult
2(k—1). O

Definim d = 2(k — 1), diametrul maxim al unei componente separate de o tiietura.

Observatie 5. Considerim oricare frunzd f. Presupunem cd f este la addncime mai mare de k, si ci arborele are
diametrul mai mare ca d. Fie 'y primul nod de pe lantul de la [la riddcindg unde subarborele lui 'y are diametrul
strict mai mare ca d (existd cici arborele are diametru > d); fie x fiul lui y care il are pe f in subarbore. Si
presupunem cd | este cel mai addnc nod din subarborele lui x. Atunci existd o solutie care il taie prima datd pe

(x,).

Schitd a demonstratier. Considerim oricare solutie. Daci aceastd solutie taie o muchie in subarborele lui y,
atunci putem si eliminim acea tiieturd, si si tiiem in loc pe (2, y) — subarborele lui y are diametrul cel mult d
deci el poate fi separat; mai mult arborele ce rimane este mai mic decit ar fi fost inainte, deci solutia ce exista deja
poate fi folositd acum.

Asadar si presupunem ci solutia nu taie nicio muchie in subarborele lui y. Ea trebuie si taie pini la urmi o
muchie de pe lantul de la £ 1a ridicind, cici f este la distantd mai mare de & de ridicind: fie s nodul mai apropiat
de / din aceastd muchie. Mai mult, cum subarborele lui x are diametrul prea mare trebuie s fie micar o muchie
tiiatd acolo, fie ea 7. (Muchia 7 nu poate fi in subarborele lui y ci am presupus ca nu se taie nicio muchie in
acest subarbore.)

Observim ci putem tiia muchia (x, y) in loc de muchia 7. Acest fapt rezultd din faptul ci frunza f are
adincime maximd in subarborele lui x — asadar este ,,cel mai important” si il separim pe el de restul arborelui.
Se poate demonstra observind atent de unde poate veni diametrul subarborilor separati.]

Observatie 6. Dacd arborele are addncimea mai mare ca k, dar are diametrul cel mult d, este necesari si

su ﬁcz’entd 0 singurd tdieturd.

Demonstragie. O tiietura este necesari cici arborele are adincime prea mare. Este suficienti pentru ci ridicina
nu poate avea doi fii ce contin in subarbori frunze mai adinci ca £, cici altfel diametrul ar fi prea mare — deci
putem tiia doar muchia de la ridicini la fiul cu adincimea maximai.]

Considerim asadar urmitorul algoritm.

1. Facem DFS prin arbore.

2. Cind suntem intr-un nod, vom calcula mai intai toate tiieturile ficute in subarborelui lui, si apoi vom
returna la pirintele lui addncimea arborelui rimas.

3. Sortim descrescitor adincimile subarborilor rimasi ai unui nod.
4. Avem urmitoarele doui cazuri:

Pentru ridicini. Tiiem muchiile citre toti subarborii cu addncimea mai mare ca k.

Pentru oricare alt nod. Cit timp ad4ncimea primului subarbore este mai mare ca d, sau suma adanci-
milor primilor doi subarbori este mai mare ca d, tiiem primul subarbore.

Observim ci acest algoritm va face doar tiieturi sanctionate de observatiile precedente. Mai mult, el poate fi
implementat si linear, observind ci fiii nu trebuie sortati neapirat, ci doar partitionati in O(1) puncte.

