Olimpiada Nationalé de Informatica
pentru gimnaziu
Etapa judeteana si etapa nationala

Baraje de selectie alotului national de juniori
si a echipelor reprezentative ale Romani

Organizate in parteneriat de

=Nl Socictatea pentru Excelent

T AT

Ministerul Educatiei
si Gercetarii

2025
Olimpiada Nationala de Informatica pentru gimnaziu
FEtapa judeteana si etapa nationala
Baraje de selectie a lotului national de juniori

si a echipelor reprezentative ale Romaniei
Enunturi, solutii, surse

Copyright 2025
© SEPI & Editura L&S Soft / Infobits Academy

Toate drepturile asupra acestei lucrdri apartin exclusiv Societatii pentru Excelenta si Performanta
in Informatica si respectiv autorilor.

Reproducerea integrald sau partiala a textului din aceasta carte este posibila doar cu acordul in
scris al colectivului de autori, respectiv al editurii L&S Soft.

Tehnoredactare

Emanuela Cerchez, Catalin Francu

Coperta

Emanuela Cerchez (pe baza unui design generat de Chat GPT)

ISBN

978-630-6559-21-3

Aceasta lucrare este o resursa educationala deschisa, oferita gratuit tuturor celor care aspira
la excelenta In informatica.

Societatea pentru Excelenta si Performanta in Informatica
E-mail: contact@sepi.ro www.sepi.ro

Editura L&S SOFT

Telefon: 0727.731.947

E-mail: hello@infobits.ro

www.infobits.ro

ebooks.infobits.ro

Compania noastra ofera de peste 30 de ani manuale scolare apro-
bate de Ministerul Educatiei si auxiliare ce respecta programa sco-
lara, aplicatii online, precum si cursuri de Informatica si T.I1.C., utile
oricarei persoane care doreste sa se pregateasca in aceste domenii.

mailto:contact@sepi.ro
https://sepi.ro/
mailto:hello@infobits.ro
https://www.infobits.ro/
https://ebooks.infobits.ro

Autori

Comisia centrala a Olimpiadei Nationale de Informatica
2025, sectiunea Gimnaziu

Etapa judeteana si etapa nationala

Clasa a V-a

prof. Adrian-Doru Pintea, Inspectoratul Scolar Judetean Cluj - coordonator
prof. Arnold Beiland, Liceul Teoretic Carei

prof. Dan Octavian Dumitrascu, Colegiul National ,,Dinicu Golescu” Campulung
prof. Eugenia Cristina Iordaiche, Liceul Teoretic ,,Grigore Moisil” Timisoara
prof. Marius Nicoli, Colegiul National , Fratii Buzesti” Craiova

prof. Nicoleta Lenuta Sandor, Colegiul National ,Mihai Eminescu” Satu Mare
prof. Roxana Gabriela Timplaru, Colegiul ,,Stefan Odobleja” Craiova

prog. Dan-Constantin Spatarel, SC Spatarel Tutoring SRL Bucuresti

stud. Jonathan Mogovan, Universitatea ,,Babes-Bolyai”, Cluj-Napoca

Clasa a VI-a

prof. Gheorghe-Eugen Nodea, Centrul Judetean de Excelenta Gorj - coordonator
prof. Ana-Maria Arisanu, Colegiul National ,,Mircea cel Batran”, Ramnicu-Valcea
prof. Alice Georgescu, Colegiul National ,Mihai Viteazul”, Ploiesti

prof. Alina Pintescu, Colegiul National ,,Gheorghe Sincai”, Baia Mare

prof. Petru-Simion Oprita, Liceul ,Regina Maria”, Dorohoi

prof. Ionel-Vasile Pit-Rada, Colegiul National , Traian”, Drobeta-Turnu Severin
prof. Dan Pracsiu, Liceul Teoretic ,Emil Racovita”, Vaslui

prof. Marinel-Paul Serban, Colegiul National ,,Emil Racovita”, lasi

stud. Petrut-Rares Gheorghies, Facultatea de Automatica si Calculatoare Bucuresti
stud. Alin-Gabriel Raileanu, Facultatea de Informatica, Universitatea ,Alexandru loan
Cuza” lasi

Clasa a VII-a

prof. Veronica-Raluca Costineanu, Colegiul National ,Stefan cel Mare” Suceava - coordo-
nator

prof. Alina Gabriela Boca, Colegiul National de Informatica , Tudor Vianu” Bucuresti
stud. Rares-Andrei Cotoi, Facultatea de Matematica si Informatica, Universitatea Babes-
Bolyai Cluj-Napoca

prof. Claudiu-Cristian Gorea-Zamfir, Inspectoratul Scolar Judetean Iasi

stud. Mihai Marcu, Delft University of Technology

prof. Vlad-Laurentiu Nicu, Liceul Teoretic ,,Mihail Kogalniceanu” Vaslui

prof. Adrian Panaete, Colegiul National ,,August Treboniu Laurian” Botosani

prof. Daniel Popa, Colegiul National ,,Aurel Vlaicu” Orastie

stud. Ioan-Cristian Pop, Facultatea de Automatica si Calculatoare, Universitatea Nationala
de Stiinta si Tehnologie Politehnica Bucuresti

prog. Cezar Trisca-Vicol, 2k Games Dublin

Clasa a VIII-a

prof. Emanuela Cerchez, Colegiul National ,Emil Racovita” Iasi - coordonator

o stud. Dumitru Ilie, Facultatea de Matematica-Informatica, Universitatea Bucuresti

o stud. Andrei Boaca, Facultatea de Informatica, Universitatea ,,Alexandru loan Cuza” Iasi

» prof. Isabela Patricia Coman, Colegiul National de Informatica ,, Tudor Vianu” Bucuresti

« stud. Victor Botnaru, Facultatea de Automatica si Calculatoare, Universitatea Nationala
de Stiinta si Tehnologie Politehnica Bucuresti

o stud. Razvan Alexandru Rotaru, Facultatea de Informatica, Universitatea ,,Alexandru loan
Cuza” lasi

o Stud. Giulian Buzatu, Facultatea de Matematica-Informatica, Universitatea Bucuresti

 prof. Nistor Mot, Liceul Teoretic ,Dr. Luca” Braila

« prof. Alin Burta, Colegiul National ,,B. P. Hasdeu” Buzau

« prof. Florentina Ungureanu, Colegiul National de Informatica Piatra Neamt

Barajul de selectie a lotului national de juniori

« prof. Adrian Panaete, Colegiul National ,A.T. Laurian” Botosani - coordonator

« prof. Emanuela Cerchez, Colegiul National ,Emil Racovita” Iasi

« stud. Alin Raileanu, Facultatea de Informatica, Universitatea ,Alexandru Ioan Cuza”, lasi

« stud. Victor Botnaru, Facultatea de Automatica si Calculatoare, Universitatea Nationala
de Stiinta si Tehnologie Politehnica Bucuresti

 prof. Ionel-Vasile Pit-Rada, Colegiul National Traian, Drobeta Turnu Severin

o stud. Razvan Alexandru Rotaru, Facultatea de Informatica, Universitatea ,,Alexandru loan
Cuza” lasi

« stud. Rares-Andrei Cotoi, Universitatea Babes-Bolyai, Cluj, Facultatea de Matematica si
Informatica

o stud. Giulian Buzatu, Facultatea de Matematica-Informatica, Universitatea Bucuresti

« prof. Dan Pracsiu, Liceul Teoretic Emil Racovita, Vaslui

« prof. Marinel Serban, Colegiul National ,Emil Racovita” lasi

« stud. Petrut-Rares Gheorghies, Facultatea de Automatica si Calculatoare, Universitatea
Nationala de Stiinta si Tehnologie Politehnica Bucuresti

 stud. Ioan-Cristian Pop, Facultatea de Automatica si Calculatoare, Universitatea Nationala
de Stiinta si Tehnologie Politehnica Bucuresti

Taberele de pregatire a lotului national de juniori si de selectie a echi-
pelor reprezentative ale Romaniei pentru competitiile internationale
Craiova 9-14 mai 2025, Zalau 22-27 mai 2025

o prof. Adrian Panaete, Colegiul National ,,A.T. Laurian” Botosani - coordonator

« prof. Ciprian Chesca, Liceul Tehnologic ,,Grigore C. Moisil” Buzau

o instr. Cristian Francu, Nerdvana Bucuresti

e instr. Catalin Francu, Nerdvana Bucuresti

« stud. Andrei Boaca, Facultatea de Informatica, Universitatea ,,Alexandru Ioan Cuza” lasi

o prof. Mihai Bunget, Colegiul National Tudor Vladimirescu, Targu-Jiu

« prof. Gheorghe-Eugen Nodea, Centrul Judetean de Excelenta Gorj, Targu-Jiu

 prof. Emanuela Cerchez, Colegiul National ,Emil Racovita” Iasi

« stud. Alin Raileanu, Facultatea de Informatica, Universitatea ,,Alexandru Ioan Cuza” lasi

« stud. Victor Botnaru, Facultatea de Automatica si Calculatoare, Universitatea Nationala
de Stiinta si Tehnologie Politehnica Bucuresti

« prof. Ionel-Vasile Pit-Rada, Colegiul National Traian, Drobeta Turnu Severin

o stud. Razvan Alexandru Rotaru, Facultatea de Informatica, Universitatea ,,Alexandru Ioan
Cuza” lasi

stud. Rares-Andrei Cotoi, Universitatea Babes-Bolyai, Cluj, Facultatea de Matematica si
Informatica

stud. Giulian Buzatu, Facultatea de Matematica-Informatica, Universitatea Bucuresti
prof. Dan Pracsiu, Liceul Teoretic Emil Racovita Vaslui

prof. Marinel Serban, Colegiul National ,Emil Racovita” Iasi

stud. Petrut-Rares Gheorghies, Facultatea de Automatica si Calculatoare, Universitatea
Nationala de Stiinta si Tehnologie Politehnica Bucuresti

stud. Ioan-Cristian Pop, Facultatea de Automatica si Calculatoare, Universitatea Nationala
de Stiinta si Tehnologie Politehnica Bucuresti

Cuprins

I Olimpiada Judeteana de Informatica 2025

1.

OJI 2025, clasa a V-a

1.1.
1.2.
1.3.
1.4.
1.5.
1.6.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

3.1.
3.2.
3.3.
3.4.
3.5.
3.6.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.

Problema Palindrom

Rezolvarea problemei Palindrom
Cod-sursa pentru problema Palindrom

Problema Semafoare

Rezolvarea problemei Semafoare
Cod-sursa pentru problema Semafoare

. OJI 2025, clasa a VI-a

Problema Avion
Rezolvarea problemei Avion

Cod-sursa pentru problema Avion

Problema Mandatar

Rezolvarea problemei Mandatar
Cod-sursa pentru problema Mandatar

. OJI 2025, clasa a VII-a

Problema Prietenie

Rezolvarea problemei Prietenie o0
Cod-sursa pentru problema Prietenie

Problema Teren
Rezolvarea problemei Teren

Cod-sursa pentru problema Teren,

. OJI 2025, clasa a VIII-a

Problema Joc
Rezolvarea problemei Joc .

Cod-sursa pentru problema Joc o

Problema Reducere

Rezolvarea problemei Reducere L.
Cod-sursa pentru problema Reducere

II Olimpiada Nationala de Informatica 2025

5. ONI 2025, clasa a V-a

5.1
5.2.
2.3.
5.4.
2.5.

Problema Cartonase

Rezolvarea problemei Cartonase
Cod-sursa pentru problema Cartonase

Problema Casute
Rezolvarea problemei Casute

N

D ot G

12
13

15
15
17
18
19
20
21

22
22
24
25
27
29
30

34
34
36
37
38
39
40

42

43
43
44
45
47
49

0.6.
5.7.
0.8.
2.9.

Cod-sursa pentru problema Casute
Problema Perechi
Rezolvarea problemei Perechi,
Cod-sursa pentru problema Perechi

. ONI 2025, clasa a VI-a

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.
6.8.
6.9.

Problema Diff
Rezolvarea problemei Difto
Cod-sursa pentru problema Diff
Problema Prime
Rezolvarea problemei Prime oo
Cod-sursa pentru problema Prime
Problema Special
Rezolvarea problemei Special L
Cod-sursa pentru problema Special

. ONI 2025, clasa a VII-a

7.1.
7.2.
7.3.
7.4.
7.5.
7.6.
7.7.
7.8.
7.9.

Problema Alvn
Rezolvarea problemei Alvn
Cod-sursa pentru problema Alvn
Problema Conturi
Rezolvarea problemei Conturi
Cod-sursa pentru problema Conturi
Problema Succesori
Rezolvarea problemei Succesori
Cod-sursa pentru problema Succesori

. ONI 2025, clasa a VIII-a

8.1.
8.2.
8.3.
8.4.
8.5.
8.6.
8.7.
8.8.
8.9.

Problema Musuroi
Rezolvarea problemei Musuroi 00000000
Cod-sursa pentru problema Musuroi
Problema Notwen
Rezolvarea problemei Notwen
Cod-sursa pentru problema Notwen
Problema Program
Rezolvarea problemei Program 000
Cod-sursa pentru problema Program

. Baraj selectie lot juniori ONI 2025

9.1.
9.2.
9.3.
9.4.
9.5.
9.6.
9.7.
9.8.
9.9.

Problema Joc
Rezolvarea problemei Joco
Cod-sursa pentru problema Joc oL
Problema Succes
Rezolvarea problemei Succes
Cod-sursa pentru problema Succes
Problema Vnoroc
Rezolvarea problemei Vnoroc
Cod-sursa pentru problema Vnoroc L L.

IIT Tabara de pregatire a lotului national de informatica juniori,

Craiova, 9-14 mai 2025 121
10.Barajul 1 122
10.1. Problema Retete 122
10.2. Rezolvarea problemei Retete 0 0L 125
10.3. Cod-sursa pentru problema Retete 127
10.4. Problema Tort e 134
10.5. Rezolvarea problemei Tort 135
10.6. Cod-sursa pentru problema Tort 137
10.7. Problema Zid 139
10.8. Rezolvarea problemei Zido 140
10.9. Cod-sursa pentru problema Zid 143
11.Barajul 2 145
11.1. Problema Lemmings 145
11.2. Rezolvarea problemei Lemmings 146
11.3. Cod-sursa pentru problema Lemmings 148
11.4. Problema Mutare 151
11.5. Rezolvarea problemei Mutare 152
11.6. Cod-sursa pentru problema Mutare 152
11.7. Problema Wall-E 155
11.8. Rezolvarea problemei Wall-E oo 157
11.9. Cod-sursa pentru problema Wall-E 158

IV Tabara de pregatire a lotului national de informatica juniori,

Zalau, 22-27 mai 2025 160
12.Barajul 3 161
12.1. Problema Allp 161
12.2. Rezolvarea problemei Allp 162
12.3. Cod-sursa pentru problema Allp o 163
12.4. Problema Powtop 165
12.5. Rezolvarea problemei Powtop 166
12.6. Cod-sursa pentru problema Powtop 168
12.7. Problema Sumgedo 170
12.8. Rezolvarea problemei Sumgedo 171
12.9. Cod-sursa pentru problema Sumged oo 173
13.Barajul 4 177
13.1. Problema Casuta 177
13.2. Rezolvarea problemei Casuta 178
13.3. Cod-sursa pentru problema Casuta 182
13.4. Problema Nrk 185
13.5. Rezolvarea problemei Nrk oo 185
13.6. Cod-sursa pentru problema Nrk 187
13.7. Problema Passepartout 189
13.8. Rezolvarea problemei Passepartout 190
13.9. Cod-sursa pentru problema Passepartout 193

Partea 1

Olimpiada Nationala de Informatica
- etapa judeteana -

16 martie 2025

Capitolul 1

OJI 2025, clasa a V-a

1.1 Problema Palindrom

Propusa de: Dan-Constantin Spatarel, Bucuresti

Oglinditul unui numar natural este obtinut din cifrele acestuia, citite de la dreapta la stanga.
Un numar natural este palindrom daca este egal cu oglinditul sau. De exemplu, numarul 121
este palindrom deoarece oglinditul sau este tot 121, iar numarul 124 nu este palindrom deoarece
oglinditul sau este 421.

Inserarea unei cifre Intr-un numar natural se poate face inainte de prima cifra a numarului
(numai daca cifra inserata este nenula), dupa ultima cifra a numarului sau intre oricare doua cifre
invecinate.

Se da un numar natural N si apoi /N numere naturale, toate avand acelasi numar de cifre.

Cerinte

1. Determinati cate dintre cele N numere sunt palindrom.

2. Determinati cate dintre cele N numere pot deveni palindrom prin inserarea in acestea a
cate unei cifre.

3. Determinati cate dintre cele N numere pot deveni palindrom prin inserarea in acestea a
cate doua cifre.

Date de intrare
Fisierul de intrare palindrom.in contine:

e pe prima linie un numar natural C, reprezentand numarul cerintei, care poate avea valorile
1, 2 sau 3;

» pe a doua linie un numar natural N, avand semnificatia din enunt;

e pe a treia linie N numere naturale, despartite prin cate un spatiu, avand semnificatia din
enunt.

Date de iesire

In fisierul de iesire palindrom.out se afiseaza, pe prima linie, un numar natural reprezentand
rezultatul determinat conform cerintei C.

Restrictii

« 1 <N <100000

« Toate numerele de pe a treia linie au acelasi numar de cifre, notat cu X

e 2<X <9
Puncte Restrictii
1 41 Cc=1
2 11 C =2, X <3
3 18 C =2, X >3
4 11 C =3, X <4
5 19 C =3, X >4
Exemple
palindrom.in palindrom.out Explicatii
1 2 12321 si 10301 sunt palindrom.
3 10331 nu este palindrom.
12321 10301 10331
2 2 232 devine 2332 prin inserarea unei cifre,
4 care este palindrom. 233 devine 2332 prin
232 233 243 990 inserarea unei cifre, care este palindrom.
243 nu poate deveni palindrom prin
inserarea unei singure cifre.
990 nu poate deveni palindrom prin
inserarea unei singure cifre (nu se permite
inserarea cifrei 0 nainte de prima cifra a
numarului).
3 4 1221 devine 123321, care este palindrom.
5 1231 devine 123321, care este palindrom.
1221 1231 3112 9880 9830 3112 devine 231132, care este palindrom.
9880 devine 908809, care este palindrom.
9890 nu poate deveni palindrom prin
inserarea a doua cifre.

1.2 Rezolvarea problemei Palindrom

Cerinta 1

In continuare vom descrie rezolvarea pentru un singur numar. Pentru rezolvarea problemei se

aplica algoritmul de mai jos in mod repetat, de N ori.

Pentru rezolvarea primei cerinte vom elimina simultan prima si ultima cifra a numarului cat timp
acestea coincid si numarul are cel putin doua cifre. La final, daca numarul ramas este 0 sau are

o cifra, atunci putem afirma ca numarul initial era palindrom.

Cerinta 2

Pentru rezolvarea celei de-a doua cerinte, observam ca operatia de inserare a unei cifre in numarul
dat si verificarea ulterioara a proprietatii de palindrom este echivalenta cu operatia de stergere a
unei cifre din numarul dat si verificarea proprietatii de palindrom a numarului astfel obtinut.

In plus, observam ca in orice numar palindrom putem insera o cifra (in mijlocul sau) astfel incat
numarul nou obtinut sa fie tot palindrom.

Deci, orice numar care respecta prima cerinta o respecta si pe a doua.
Pentru a determina eficient care cifra ar trebui stearsa, vom efectua urmatorul algoritm:

1. vom elimina simultan prima si ultima cifra a numarului cat timp acestea coincid si numarul
are cel putin doua cifre;
2. daca numarul ramas este 0 sau are o cifra, atunci putem spune ca raspunsul la cerinta este
afirmativ;
3. altfel vom investiga doua cazuri:
(a) daca eliminam prima cifra;
(b) daca eliminam ultima cifra;
4. in ambele cazuri, dupa eliminarea cifrei corespunzatoare, vom repeta pasii (1) si (2);
5. daca la final numarul ramas are mai mult de o cifra, atunci raspunsul la cerinta este negativ;

Cerinta 3

Pentru rezolvarea celei de-a treia cerinte, observam ca operatia de inserare a doua cifre in numarul
dat si verificarea ulterioara a proprietatii de palindromicitate este echivalenta cu operatia de
stergere a doua cifre din numarul dat si verificarea proprietatii de palindromicitate a numarului
astfel obtinut.

In plus, observam ca in orice numar palindrom putem insera o cifra (in mijlocul sau) astfel incat
numarul nou obtinut sa fie tot palindrom.

Deci, orice numar care respecta a doua cerinta o respecta si pe a treia.
Pentru a determina eficient care cifre ar trebui sterse, vom efectua urmatorul algoritm:

(A) pentru stergerea primei cifre, vom efectua pasii (1), (2) si (3);
(B) pentru stergerea celei de-a doua cifre, vom efectua din nou pasii (1), (2) si (3);
(C) pentru determinarea raspunsului, vom efectua iarasi pasii (1), (2) si (5).

Observati ca, efectudnd de doua ori pasul (3), vom ajunge sa investigam 4 scenarii:

1. la prima nepotrivire eliminam prima cifra iar la a doua nepotrivire eliminam din nou prima
cifra;

2. la prima nepotrivire eliminam prima cifra iar la a doua nepotrivire eliminam a doua cifra;

3. la prima nepotrivire eliminam a doua cifra iar la a seconda nepotrivire eliminam prima
cifra;

4. la prima nepotrivire eliminam a doua cifra iar la a doua nepotrivire eliminam din nou a
doua cifra.

Pentru a evita cazul particular in care nu avem voie sa adaugam cifra 0 la inceputul numarului
initial, atunci cand eliminam ultima cifra trebuie sa verificam si sa ignoram cazul in care numarul
ramas pe care lucram este numarul original si ultima sa cifra este 0.

Complexitatea timp: O(N - X)

1.3 Cod-sursa pentru problema Palindrom

#include <fstream>

int main() {
std::ifstream fisier_in("palindrom.in");
std::ofstream fisier_out("palindrom.out");
int C, N;
fisier_in >> C >> N;
int raspuns = 0;
for (int 1 = 0; i < N; i++) {
int nr;
fisier_in >> nr;
bool este_bun = false;
int nr_original = nr;
// Calculez puterea lui 10 care are la fel de multe cifre ca si numdrul citit.
// Ma va ajuta sd aflu care este prima cifrd a numdrului si eventual sd o elimin.
int powl@ = 1;
while (nr / powl@ > 9) {
pow1@ *= 10;
}
// Cat timp numdrul are cel putin doud cifre iar
// prima si ultima cifrd a numdrului coincid, le elimin.
while (pow1@ > 1 && nr / powl1@ == nr % 10) {

nr %= powlo;
nr /= 10;
powl@ /= 100;

}
if (powl0 <= 1) {
// Dacd numdrul rdmas este @ sau are o singurd cifrd, atunci
// indiferent de cerinta pe care trebuie sd o rezolv, rdspunsul este afirmativ.
este_bun = true;
} else if (C >= 2) {
// Dacd cerinta este 2 sau 3, trebuie sd investighez doud scenarii:
// (daca opl1 == 1) din numdrul rdmas voi elimina prima cifrd;
// (daca opl == 2) din numdrul rdmas voi elimina ultima cifra.
for (int opl = 1; opl <= 2; opl++) {
// Voi lucra pe o copie a numdrului.
int copiel_nr = nr;
if (opl == 1) {
copiel_nr %= powl0;
} else {
// Dacd incerc sd elimin ultima cifrd din numdrul original
// si aceasta este 0, atunci inseamnd cd ceea ce fac este
// echivalent cu a insera o cifrd de @ in fata numdrului
// original, ceea ce nu este permis.
if (copiel_nr == nr_original && copiel_nr % 10 == 0) {
continue;
}
copiel_nr /= 10;
}
int copiel_powl1@ = powl@ / 10;
// Cat timp numdrul are cel putin doud cifre iar
// prima si ultima cifrd a numdrului coincid, le elimin.
while (copiel_powl1@ > 1 && copiel_nr / copiel_powl1@ == copiel_nr % 10) {
copiel_nr %= copiel_powl0;
copiel_nr /= 10;
copiel_powl1@ /= 100;
}
if (copiel_powl@ <= 1) {
// Dacd numdrul rdmas este @ sau are o singurd cifrd, atunci

10

3

// indiferent de cerinta pe care trebuie sd o rezolv, raspunsul este afirmativ.
este_bun = true;
} else if (C == 3) {
// Dacd cerinta este 3, trebuie sd investighez doud scenarii:
// (dacd op2 == 1) din numdrul rdmas voi elimina prima cifra;
// (dacd op2 == 2) din numdrul rdmas voi elimina ultima cifra.
for (int op2 = 1; op2 <= 2; op2++) {
// Voi lucra pe o a doua copie a numdrulut.
int copie2_nr = copiel_nr;
if (op2 == 1) {
copie2_nr %= copiel_powl0;
} else {
copie2_nr /= 10;
3
int copie2_pow1@ = copiel_powl@ / 10;
// Cat timp numdrul are cel putin doud cifre iar
// prima si ultima cifrd a numdrului coincid, le elimin.
while (copie2_pow1@ > 1 && copie2_nr / copie2_powl@ == copie2_nr % 10) {
copie2_nr %= copie2_powl0;
copie2_nr /= 10;
copie2_powl@ /= 100;
}
// Trebuie sd rezolv cerinta 2 si verific dacd am rdmas
// cu un numdr de o singurd cifrd sau cu 0.
if (copie2_powl@ <= 1) {
este_bun = true;

if (este_bun) {
raspuns+t;
//fisier_out << nr_original;
3
}

fisier_out << raspuns;
return 0;

11

1.4 Problema Semafoare

Propusa de: prof. Cristina lordaiche, Liceul Teoretic ,Grigore Moisil” Timisoara

Un dispozitiv de tip semafor are trei culori, rosu, galben si verde, si
functioneaza ciclic, astfel Incat, in fiecare moment, sa fie aprinsa o sin-
gurd culoare. Intr-o serie, culorile se succed intotdeauna in ordinea
urmatoare: rosu, galben, verde, galben. Astfel, la pornire se aprinde
rosu, iar dupa ce se stinge aceasta culoare se aprinde galben, apoi verde
si apoi, din nou, galben, apoi seria culorilor se reia ciclic, in succesiunea
precizata. Pentru doua semafoare se testeaza acum modul de functio-
nare. La primul semafor, intr-o serie rosu sta aprins R1 secunde, apoi
se aprinde galben, pentru G1 secunde, apoi se aprinde verde, pentru
V1 secunde, apoi din nou galben, pentru G1 secunde. La al doilea se-
mafor, intr-o serie rosu sta aprins R2 secunde, apoi se aprinde galben,
pentru G2 secunde, apoi se aprinde verde, pentru V2 secunde, si din
nou galben, pentru G2 secunde.

)
OO)

A
rG 1
h

h

In acest moment, au trecut T1 secunde de la pornirea primului semafor si T2 secunde de la
pornirea celui de-al doilea semafor.

Cerinte

1. Stiind ca in acest moment la niciunul dintre semafoare nu este aprins verde, determinati
numarul minim de secunde care trebuie sa treaca, din acest moment, pana cand se aprinde
verde la cel putin unul dintre ele.

2. Determinati numarul minim de secunde care trebuie sa treaca, din acest moment, pana
cand ambele semafoare au aprinsa aceeasi culoare.

Date de intrare
Fisierul de intrare semafoare.in contine:

 pe prima linie, un numar natural, C, reprezentand numarul cerintei (1 sau 2);
e pe a doua linie, trei numere naturale, R1, G1, V1, in aceasta ordine, cu semnificatia din

enunt;

e pe a treia linie, trei numere naturale, R2, G2, V2, in aceasta ordine, cu semnificatia din
enunt;

e pe a patra linie, doua numere naturale, T1 si T2, in aceasta ordine, cu semnificatia din
enunt.

Numerele aflate pe aceeasi linie sunt separate prin cate un spatiu.

Date de iesire

Fisierul de iesire semafoare.out contine, pe prima linie, un numar natural, reprezentand rezul-
tatul determinat conform cerintei C.

Restrictii

« R1,G1, V1, R2, G2, V2 sunt numere naturale nenule, cu cel mult 5 cifre fiecare
e 0<T1, 72 < 1000000000
o Pentru datele furnizate, se garanteaza ca exista intotdeauna solutie

12

Puncte Restrictii

33

=1,

T1=0siT2=0

35

=1,

TN+72>0

13

C =2

1 <T1,72 < 100000

=~ W N =

19

C =2,

100001 < 71,72 < 1000000000

Exemple

semafoare.in

semafoare.out Explicatii

S w N =
S - bh

w N

4 Primul semafor porneste in acest moment
cu rosu, care sta aprins 2 secunde, apoi
galben 4 secunde si verde 2 secunde. Trec
2 4+ 4 = 6 secunde pana cand se aprinde
verde.

Al doilea semafor porneste in acest moment
cu rosu, care sta aprins 3 secunde, galben 1
secunda si verde 3 secunde. Trec 3 + 1 =4
secunde pana cand se aprinde verde.
Numarul minim de secunde care trebuie sa
treaca din acest moment pana cand se
aprinde verde la unul dintre semafoare este
egal cu 4.

A w N -
_ o N

w N

2 Primul semafor a pornit de 4 secunde, deci
in acest moment este deja aprins galben,
de 2 secunde, iar peste 2 secunde urmeaza
verde.

Al doilea semafor a pornit de 1 secunda,
deci in acest moment este deja aprins rosu,
de 1 secunda, iar peste 2 secunde urmeaza
galben, apoi peste inca o secunda urmeaza
verde (in total peste 3 secunde).

Numarul minim de secunde care trebuie sa
treaca din acest moment pana cand se
aprinde verde la unul dintre semafoare este
egal cu 2.

w w NN
N — B

w N

1 Primul semafor a pornit de 3 secunde, deci
in acest moment este deja aprins galben, de
1 secunda, care sta aprins inca 3 secunde.
Al doilea semafor a pornit de 2 secunde,
deci in acest moment este deja aprins rosu,
de 2 secunde, iar peste 1 secunda urmeaza
galben.

Dupa o secunda din acest moment este
aprins galben, la ambele semafoare.

13

1.5 Rezolvarea problemei Semafoare

Cerinta 1

Pentru cazurile in care T1 = 0 si T, = 0, se poate calcula, cu o formula simpla, dupa cate secunde
se face verde la unul dintre cele doua semafoare:

e (Calculam pentru fiecare semafor totalul secundelor care trebuie sa treaca pana cand se
aprinde galben dupa rosu, iar apoi verde dupa galben.
« Afisam timpul minim astfel calculat.

Algoritm:

¢ calculam totalul de secunde necesare fiecarui semafor
« afisam timpul minim calculat:

if R + G1 < Ry + G5 then
‘ afiseaza Ry + G

else

- afiseazd Ry + Gy

Pentru cazurile in care 77 + 75 > 0 (cel putin unul dintre cele doua semafoare nu porneste
la momentul curent), observam ca fiecare semafor functioneaza pe baza unui ciclu temporar
ce se repeta continuu. O solutie posibila consta in parcurgerea urmatorilor pasi:

 calculam durata ciclului pentru fiecare semafor:

ciclul < Ry + G, + V1 + G,
ciclu2 < Ry + Gy + Vo + Go

« calculam pozitia in ciclul fiecarui semafor:

T, < T, mod ciclul
Ty <+ T5 mod ciclu2

o determinam timpul pana se aprinde verde la primul semafor:

if Ty < Ry + Gl then

‘ timp pana_la_verdel <+ Ry + G, — T}

else if T < R; + G; + Vj then

‘ timp_pana_la_verdel < 0

else

L timp pana_la_wverdel + ciclul — T} + Ry + G4

o determinam timpul pdna se aprinde verde la cel de-al doilea semafor (similar)
o determinam care semafor ajunge primul pe verde:

if timp_pana_la_verdel < timp_pana_la_verde2 then
‘ afiseaza timp pana la verdel

else

L afiseaza timp pana la verde2

14

Cerinta 2

O solutie posibila consta in parcurgerea urmatorilor pasi:

o (Calculam durata totala a ciclului pentru fiecare semafor, similar cu cerinta anterioara.
o Identificam pentru fiecare semafor culoarea aprinsa la momentul curent. De exemplu, la
momentul curent ¢;, culoarea primului semafor se poate determina astfel:

if t1 < Ry then
- culoarel + 0 (Rosu)
else
if t; < Ry + GG; then
 culoarel + 1 (Galben)
else
iftl < R1—|—G1 + Vi then
- culoarel + 2 (Verde)
else
 culoarel <1 (Galben)

e Simulam scurgerea timpului, din secunda in secunda, pana cand la ambele semafoare se va
observa aceeasi culoare.

1.6 Cod-sursa pentru problema Semafoare

using namespace std;
ifstream fin()8
ofstream fout();
int C;
int R1, G1, V1, R2, G2, V2, T1, T2;
int main()
{
fin>>C;
fin >> R1 >> G1 >> V1 >> R2 >> G2 >> V2 >> T1 >> T2;
if(C==1 && T1==0 && T2==0)
{
if (R1+G1<R2+G2)
fout<<(R1+G1)<< ;
else fout<<(R2+G2)<< :
}
int ciclul = R1 + G1 + V1 + G1;
int ciclu2 = R2 + G2 + V2 + G2;
T1 = T1 % ciclul;
T2 = T2 % ciclu2;
if(C==1 && T1+T2>0)
{
int timp_la_verdel;
if (T1 < R1 + G1)
timp_la_verdel = R1 + G1 - T1;
else
if (T1 < R1 + G1 + V1)
timp_la_verdel = 0;
else
timp_la_verdel = ciclul - T1 + R1 + G1;

int timp_la_verde2;

15

if (T2 < R2 + G2)
timp_la_verde2 = R2 + G2 - T2;
else
if (T2 < R2 + G2 + V2)
timp_la_verde2 = 0;
else
timp_la_verde2 = ciclu2 - T2 + R2 + G2;

if (timp_la_verdel < timp_la_verde2)
fout << timp_la_verdel <<
else
fout << timp_la_verde2 << :

’

3
else if(C==2)
{
int culoarel, culoare2;
int timp_minim = 0;

bool gasit = :
while (!gasit)
{
int t1 = (T1 + timp_minim) % ciclul;
int t2 = (T2 + timp_minim) % ciclu2;
if (t1 < R1)
culoarel = 0;
else

if (t1 < R1 + G1)
culoarel = 1;
else
if (t1 < R1 + G1 + V1)
culoarel = 2;
else
culoarel

13

if (t2 < R2)
culoare2 = 0;
else
if (t2 < R2 + G2)
culoare2 = 1;
else
if (t2 < R2 + G2 + V2)
28

culoare2
else
culoare2

13

if (culoarel == culoare2)
gasit = ;

else
timp_minim++;

}
fout << timp_minim << endl;
3
return 0;

b

16

Capitolul 2

OJI 2025, clasa a VI-a

2.1 Problema Avion

Propusa de: prof. Marinel-Paul Serban, Colegiul National ,,Emil Racovita”, lasi

Avionul cu care am zburat ultima data are o organizare foarte simpla. Pe fiecare rand sunt 6
scaune, cate 3 pe fiecare parte, avand la mijloc culoarul pe care intra si ies pasagerii. Randurile de
scaune pentru pasageri sunt numerotate de la 1 la N7, incepand dinspre cabina pilotilor avionului.
Pe fiecare rand, scaunele sunt numerotate cu cifre de la 1 la 6.

Urcarea in avion se face pe una dintre cele doua scari: scara 1, situata in partea din fata a
avionului, si scara 2, situata in partea din spate a acestuia.

De la intrarea in avion fiecare pasager parcurge 3 metri pana la culoarul principal, dupa care
inainteaza pe culoar parcurgdnd cate 1 metru pentru fiecare rand de scaune. De pe culoar pana
la scaunele 3 sau 4 se parcurge 1 metru, pana la scaunele 2 sau 5 se parcurg 2 metri, iar pana la
scaunele 1 sau 6 se parcurg 3 metri.

In asteptare sunt n pasageri, care trebuie sa urce in avion pe una din cele doua scari. Pe biletul
fiecarui pasager este scris locul pe care trebuie sa il ocupe 1n avion, sub forma perechii rand
scaun (de exemplu 5 2 — randul 5 scaunul 2).

Riand 1 2 3 4 (4] 7 8 9 10

Se cunosc numarul de randuri de scaune N7 din avion, numarul n de pasageri si locul fiecarui
pasager.

17

Cerinte

1. Determinati pentru fiecare dintre cei n pasageri, scara pe care trebuie sa urce In avion,
astfel Incat distanta parcursa de el pana la locul sau sa fie minima.

2. Determinati distanta totalda minima parcursa de pasageri in avion. Distanta totala parcursa
este egala cu suma distantelor minime parcurse de cei n pasageri pana la locurile lor.

Date de intrare

Fisierul de intrare avion.in contine pe prima linie trei numere naturale: ¢, reprezentand cerinta
care trebuie rezolvata (¢ € {1,2}), Nr si n, cu semnificatiile din enunt. Fiecare dintre urmatoarele
n linii contine cate o pereche de numere naturale, reprezentand locul unui pasager, in ordinea in
care acestia stau In asteptare. Numerele aflate pe aceeasi linie a fisierului sunt separate prin cate
un spatiu.

Date de iesire

Pentru cerinta 1 (daca ¢ = 1) fisierul de iesire avion.out contine n linii, pe fiecare linie fiind cifra
1 sau cifra 2, reprezentand scara pe care urca fiecare pasager, in ordinea In care acestia au stat
in asteptare.

Pentru cerinta 2 (daca ¢ = 2) fisierul de iesire avion.out contine un numar natural, reprezentand
distanta totala minima determinata la cerinta 2.

Restrictii

5
ce{l,2}

6 < Nr <50, Nr este numar par

1<n<6xNr

Exista zboruri in care nu sunt ocupate toate locurile

Puncte Restrictii

1 50 pentru cerinta 1

2 90 pentru cerinta 2

Exemple
avion.in avion.out Explicatii
110 7 1 Se rezolva cerinta 1.
52 2 Este un avion cu 10 randuri de scaune si
2 T ; sunt 7 pasageri.
75 1 Daca ar urca pe scara 1, primul pasager ar
16 2 parcurge 3 + 5 + 2 metri, iar daca ar urca
8 3 2 pe scara 2 ar parcurge 3 + 6 + 2 metri. Ca
1

01 urmare, va alege si urce pe scara 1.
Analog se procedeaza si pentru ceilalti
pasageri. Astfel, pasagerii cu numerele de
ordine 1, 3 si 5 urca pe scara 1, iar
pasagerii cu numerele de ordine 2, 4, 6 si 7
urca pe scara 2.

18

07 57 Se rezolva cerinta 2.

Este un avion cu 10 randuri de scaune si
sunt 7 pasageri.

Pentru a parcurge distanta minima pana la
locul sau, pasagerul 1 urca pe scara 1,
parcurge 3 metri pana la culoarul central
01 apoi parcurge 5 metri pe culoar, apoi 2
metri pana la scaunul alocat (54 2). El
parcurge astfel 10 metri pana la locul sau.

— 00 = N U1 © 01N
w o U1 = AN =

Rand 1 2 3 4 5 6 7 8 9 10 Loc
0 [6]
0
0 [4]
——————P

| 0
Y%
0 0

Scaral Scara2

Pasagerul 2 urca pe scara 2 si parcurge 6
metri (34 2+ 1).

Pasagerul 3 urca pe scara 1 si parcurge 11
metri (3 + 5+ 3).

Pasagerul 4 urca pe scara 2 si parcurge 9
metri (3 +4+2).

Pasagerul 5 urca pe scara 1 si parcurge 7
metri.

Pasagerul 6 urca pe scara 2 si parcurge 7
metri.

Pasagerul 7 urca pe scara 2 si parcurge 7
metri.

In total au fost parcursi 57 de metri.

2.2 Rezolvarea problemei Avion

Cerinta 1 - 50p

Avand In vedere ca numarul de randuri Nr este par, exista acelasi numar de randuri in fiecare
jumatate a avionului.

Este suficient sa fe comparat cu Nr/2 randul de pe biletul fiecarui pasager. Daca randul este in
prima jumatate a avionului (rdndul < Nr/2) se va afisa 1, altfel se va afisa 2.

Cerinta 2 - 50p

Pentru fiecare pasager se va compara si de aceasta data randul de pe bilet cu mijlocul avionului
(N7/2). Daca rdandul < Nr/2 si pasagerul urca in avion pe scara 1, la suma totala se va adauga
randul de pe bilet, iar in caz contrar, cand pasagerul intra pe scara 2, el va parcurge pana la
randul de pe bilet distanta Nr — randul + 1, care se va adauga la suma totala. Apoi, pasagerul
va mai parcurge 1, 2 sau 3 metri in functie de locul ocupat pe randul de pe bilet: 1 metru daca
locul este 3 sau 4, 2 metri daca locul este 2 sau 5 si 3 metri daca locul este 1 sau 6. Aceste valori
se adauga si ele la suma totala. Avand in vedere ca fiecare dintre cei n pasageri parcurge 3 metri
de la intrarea In avion pana la culoarul central, la suma totald se mai adauga 3 * n metri.

19

2.3 Cod-sursa pentru problema Avion

using namespace std;

ifstream fin()g
ofstream fout();

int C, n, NR, i, randul, k, total_dist, loc, litera;

int main()

{
fin >> C >> NR >> n;
if (C == 1)
{
for (i = 1; i <= n; it++)
{
fin >> randul >> loc;
if (randul <= NR / 2)
fout << 1 << 2
else
fout << 2 << 0
}
3
else
{
total_dist = 0;
for (i = 1; i <= n; i++)
{
fin >> randul >> loc;
if (randul <= NR / 2)
total_dist += randul;
else
total_dist += (NR - randul + 1);
if (loc == || loc == 6)
total_dist += 3;
if (loc == 2 || loc == 5)
total_dist += 2;
if (loc == 3 || loc == 4)
total_dist += 1;
}
fout << total_dist + 3 * n << e
}
return 0;
}

20

2.4 Problema Mandatar

Propusa de: prof. Gheorghe-Eugen Nodea, Centrul Judetean de Excelenta Gorj

Se considera sirul A = (A;, As, ..., A,) cu n numere naturale nenule. Pe baza sirului A se con-
struieste sirul B, unde fiecare element B; este cel mai mic numar natural care are aceiasi factori
primi cu 4;, cu 1 <17 < n.

Exemplu: Daci A; = 24, acesta se descompune in 23 - 3! si are factorii primi 2 si 3. Ca urmare,
By =6 (6 = 2" - 3!) este cel mai mic numar natural care are aceiasi factori primi cu 24.

O secventa de cel putin doua numere aflate pe pozitii consecutive in sirul B este mandatorie
daca exista un numar x (2 < x < 9) in aceasta secventa care divide fiecare dintre elementele
secventei. Numim acest numar x - mandatar al secventei. Lungimea secventei este egala cu
numarul de elemente ale acesteia.

Exemplu: secventa 6, 14, 2, 22, 2, 70 este o secventa mandatorie pentru ca toate numerele care
o compun sunt divizibile cu x = 2, numar cuprins intre 2 si 9, ce apartine secventei. Lungimea
secventei este 6.

Cerinte

1. Determinati cel mai mare numar prim din sirul A.
2. Determinati cel mai mare numar al sirului B ce are un numar maxim de factori primi.
3. Determinati lungimea maxima a unei secvente mandatorii din sirul B.

Date de intrare

Fisierul de intrare mandatar.in contine pe prima linie numarul natural ¢, reprezentand cerinta
care trebuie rezolvata (1,2 sau 3), pe linia a doua numarul natural n, cu semnificatia din enunt,
iar pe urmatoarea linie n numere naturale, separate prin cate un spatiu, reprezentand elementele
sirului A.

Date de iesire

Fisierul de iesire mandatar.out contine numarul determinat pentru cerinta c.

Restrictii

e ce{1,2,3}
e 1 <n<100000
« 2< A <107, 1<i<n

e 2< <9
Puncte Restrictii
1 20 c = 1. Sirul A contine cel putin un numar prim.
2 30 c=2.
3 20 c = 3. Sirul B contine cel putin o secventa mandatorie.

21

Exemple

mandatar.in mandatar.out Explicatii
1 29 c =1, n=10. Se rezolva cerinta 1.
10 Dintre cele 10 elemente ale sirului A,

17459 90 66 24 2 40 29 4 numerele 17, 2, 29 sunt numere prime, iar

numarul 29 este cel mai mare dintre

acestea.
2 66 ¢ =2, n =10. Se rezolva cerinta 2.
10 Se construieste sirul B pe baza sirului A,
1745990 66 24 2 40 29 4 dupa cum urmeaza: 17 15 3 30 66 6 2 10
29 2.

Sunt doua elemente care au numar maxim
de factori primi (cate 3 factori primi): 30 si
66, iar 66 este cel mai mare.

3 5 ¢ =3, n =10. Se rezolva cerinta 3.

10 Se construieste sirul B pe baza sirului A,

17459 90 66 24 2 40 29 4 dupi cum urmeazi: 17 15 3 30 66 6 2 10
29 2.

Sunt doua secvente mandatorii de lungime
maxima, care este egala cu b:

15 3 30 66 6;

30 66 6 2 10.

2.5 Rezolvarea problemei Mandatar

Cerinta 1 - 50p

Se retin numerele citite din fisierul de intrare in sirul A - tablou unidimensional (vector). Pentru
determinarea celui mai mare numar prim din sirul A se foloseste un algoritm de verificare a
primalitatii unui numar.

In functie de implementarea aleasa pentru verificarea primalitatii se pot obtine punctaje gradual,
intre 20 — 50p (O(n), O(sqrt(n)), ciurul lui Eratostene)

Cerinta 2 - 30p

Pe baza sirului A, construim sirul B folosind un algoritm de descompunere in factori primi, unde
fiecare element al sirului B; este cel mai mic numar natural care are aceiasi factori primi cu A4;,
cul <i<n.

Algoritmul de descompunere in factori primi va determina, pentru fiecare element al sirului A,
atat elementele sirului B cat si numarul de factori primi al fiecarui element B;. Se va retine cel
mai mare numar al sirului B care are un numar maxim de factori primi.

In functie de implementarea aleasa pentru descompunerea in factori primi se pot obtine punctaje
gradual, intre 10 — 30p.

Cerinta 3 - 20p

Pentru determinarea lungimii maxime a unei secvente mandatorii din sirul B se poate folosi o
structura for ce parcurge numerele mandatare. Acestea pot fi: 2, 3, 5, 6 sau 7.

22

2.6 Cod-sursa pentru problema

using namespace std;
ifstream fcin();
ofstream fcout();
const int NM = 1le7;
int b[100001];
int ¢, n, x, Max, nrf, nrf_max, MaxM, k, kmax, ok;
int mal[] = {9,2,3,5,6,7};
void mandatar(int x, int &y, int &nf)
{ int d = 2;

nf = 0; =1;

if (x % d == 0)

{y=2; nf=1;
while (x % d == 0) x = x / d;

d = 3;
while (d*d <= x)
{
if (x%d == 0)
{nf++; y *= d;
while (x % d == 0) x = x / d;
3
else d = d+2;
}

if (x > 1) { nf++; y *= x; }
}
int main()
{ fcin >> ¢ >> n;
for (int i=1; i<=n; i++)
{fcin >> x;
mandatar(x, b[i], nrf);
if (nrf == 1) Max = max(Max, Xx);
if (nrf > nrf_max) nrf_max = nrf, MaxM = b[i];

Mandatar

else
if (nrf == nrf_max && b[i] > MaxM) MaxM = b[i];
}
if (c == 1) fcout << Max;
else
if (¢ == 2) fcout << MaxM;
else
{for (int j=1; j<=5; j++)
{ok = k = 0;
for (int i=1; i<=n; i++)
{
if (b[i] == mal[jl) ok = 1;
if (b[i] % mal[j]l == 0) k++;
else
k =0, ok = 0;
if (k > kmax && ok) kmax = k;
3
3
fcout << kmax;
3
return 0;

24

Capitolul 3

OJI 2025, clasa a VII-a

3.1 Problema Prietenie

Propusa de: stud. Marcu Mihai, Delft University of Technology

Elevii celor doua clase de a saptea din scoala merg in excursie. In fiecare clasa sunt cate N elevi.
Ovidiu si Mihnea, fiind liderii celor doua clase din care fac parte, doresc sa analizeze reusita
excursiei, In functie de gradul de compatibilitate dintre elevii participanti la excursie.

Pentru a determina acest grad, fiecarui elev din cele doua clase 1i este atribuit un coeficient de
amabilitate. Astfel, elevii din clasa lui Ovidiu au, in ordinea din catalog, coeficientii a, as, . .., an,
iar elevii din clasa lui Mihnea au, in ordinea din catalog, coeficientii by, bs, ..., by.

Gradul de compatibilitate dintre doi elevi din clase diferite este definit ca patratul diferentei
dintre coeficientii de amabilitate atribuiti fiecaruia. Astfel, gradul de compatibilitate G;; dintre
al i-lea elev din clasa lui Ovidiu si al j-lea elev din clasa lui Mihnea este egal cu (a; — b;)?, cu

1<i<Nsil<j<N.

Gradul de compatibilitate dintre cele doua clase este suma tuturor gradelor de compati-
bilitate dintre oricare doi elevi din clase diferite, adica suma tuturor valorilor G;; cu 1 <¢ < N
sil<j<N.

Pentru a lega o prietenie durabila doi elevi din clase diferite trebuie sa aiba gradul de compa-
tibilitate fie mai mic sau egal cu X, fie mai mare sau egal cu Y, unde X si Y sunt valori date
(adica Gy; < X sau Y < Gj)

Se cunosc N, coeficientii aq, ag, ..., an si by, by, ..., by, precum si valorile X si Y, cu semnificatia
din enunt.

Cerinte

1. Determinati gradul de compatibilitate dintre cele doua clase.
2. Determinati, pentru fiecare elev din clasa lui Ovidiu, numarul de elevi din clasa lui Mihnea
cu care acesta poate lega o prietenie durabila.

Date de intrare

Fisierul prietenie. in contine pe prima linie un singur numar natural C', semnificand cerinta care
trebuie rezolvata (care poate fi doar 1 sau 2). Pe a doua linie se gésesc trei numere naturale IV,
X siY, cu semnificatia din enunt. Pe a treia linie se gasesc N numere naturale a;, as, ..., an, cu

25

semnificatia din enunt. Pe a patra linie se gasesc N numere naturale by, by, ..., by, cu semnificatia
din enunt. Numerele aflate pe aceeasi linie a fisierului sunt separate prin cate un spatiu.

Date de iesire
Fisierul prietenie.out contine:

e daca C = 1, numarul natural determinat pentru cerinta 1;
o daca C' = 2, N numere naturale, separate prin cate un spatiu, reprezentand numerele
determinate pentru cerinta 2, corespunzatoare ordinii in care elevii apar in catalogul clasei.

Restrictii
e 1 < N <200000.
e 0 <a;b; <30000, pentru oricare 1 <i4,7 < N.

e 0 <X <Y <900000000.
Ovidiu a observat ca (a; — b;)? se poate scrie si sub forma a? + bjz —2-a;-0bj.

Puncte Restrictii

1 25 C=1si1<N <2500

2 10 C=1,2500 < N <200000 si 0 < a;,b; <5000, pentru oricare 1 <1,5 < N
3

4

5

6

10 C =1si2500 <N <200000

25 C=2si1<N <2500

15 C =2,2500 < N <200000 si 0 < a;,b; <5000, pentru oricare 1 <1,5 < N
15 C =2si2500 <N <200000

Exemple
prietenie.in prietenie.out Explicatii
1 136 Se rezolva cerinta C' = 1.
4310 Avem N = 4.
1357 Gy = 2 2 .
=(a;—b;)"=(1-5)"=16
5140 1= (a1 —b1)* = () ;

G12 = (a1 — 62)2 = (1 — 1)2 = 0;

Gradul de compatibilitate dintre cele doua
clase este egal cu:

(1-524+(1-1)2+(1—-4)2%+(1-2)2+
B=52+B-1)+(3—-4°+(3—2)*+
(55" +(5=1)°+(5—4)*+ (5 - 2)*+
(T=5)2+(T=1)* +(T—4)* +(7T—-2)* =
164+04+9+14+4+4+1+1+0+16+

1+9+4+36+9+25=136

26

o= N
- w w
~ o1 =
NN

3232

Se rezolva cerinta C' = 2, pentru care
N=4 X=3s1Y =10.

Pentru primul elev din clasa lui Ovidiu,
care are coeficientul a; = 1, gradele de
compatibilitate cu elevii din cealalta clasa
sunt:

o (a1—0y)* =(1-5)2=16,iar 16 > Y;

e (a1 —by)*=(1-1)*=0, iar 0 < X;

. (al—b3)2 = (1—4)2 :9, iar X <

9<Y;

e (a1 —b)?=(1-2)2%=1, iar 1 < X
Astfel, el poate lega o prietenie de lunga
durata cu 3 elevi din clasa lui Mihnea: cu
primul, cu al doilea si cu al patrulea.

Al doilea elev din clasa lui Ovidiu poate
lega o prietenie de lunga durata cu doi
elevi din clasa lui Mihnea: cu al treilea si
cu al patrulea.

Analog, al treilea si al patrulea elev din
clasa lui Ovidiu pot lega o prietenie de
lunga durata cu 3 elevi, respectiv cu 2 elevi
din clasa lui Mihnea.

3.2 Rezolvarea problemei Prietenie

Cerinta 1

O observatie necesara pentru rezolvarea primei cerinte este ca (a; — b;)

2 se poate scrie sub forma

a?—2-a;-bj+ b?, iar o alta observatie e ca fiecare numar din sirul a, va fi implicat In n sume (cu
fiecare element din sirul b). Deci pentru fiecare element a;, vom avea suma:

(CLZ' — b1)2 + (CLZ‘ — 62)2 + ...+ (ai — bn)2 =

=(a?—2-a; by +b])+(al —2-a; by +03)+ ...+ (a] —2-a;- b, +b2) =

=n-a’—2-a;-(by+by+...+b,)+ (02 +b3+..+b) =
=n-al —2-a;- SumB + SumPatrateB

unde SumB = by + by + ... + b, este constant si se va calcula separat. Similar, SumPatrateB =
b3 + b3 + ... + b2. Astfel se vor calcula pentru fiecare termen al sirului a aceste sume si se vor
adauga la suma totala. Complexitatea finala este O(n).

Cerinta 2

Pentru fiecare element al sirului a (a;), vom cauta cite elemente din sirul b (b;), au proprietatea
ca (a; —bj)? este fie mai mic sau egal cu X, fie mai mare sau egal cu Y. Pentru a obtine acest lucru
se vor calcula frecventele din sirul b si sumele partiale pe ele. Asadar, consideram fr; frecventa
fiecarui numar din sirul b, iar sumfr; = fri+ fro+...4+ fr;. Vom calcula cate numere avem astfel
incat (a; — b;)? <= X, VX <= bj —a; <=V X, adica a; — VX <= b; <=a; + V' X. Pentru a
calcula numarul de numere dintre aceste 2 valori se va folosi sirul de sume partiale sum fr;. Acum
vom calcula cate numere din sirul b existd astfel Incat (a; — b;)? >=Y, adicd b; — a; >= VY

27

sau b; — a; <= —\/?, deci b; >= VY + a; sau by <= VY + a;, cu ajutorul sirului sumfr;.
Complexitatea finala este O(n).

3.3 Cod-sursa pentru problema Prietenie

using namespace std;

ifstream f("prietenie.in");
ofstream g ("prietenie.out");

int n,c;
int p,q;
int a[200005];
int b[2000057;

long long sumA;
long long rezi;

int rez[200005];
int frecvB[300005];
int sumpartFrecv[300005];

int main()
{
>>c;
>>n;
f>>p>>q;
for(int i=1;i<=n;++i)
>>alil;
for(int i=1;i<=n;++i)
f>>b[il;

if(c==1){

for(int i=1;i<=n;++i){
rezl+=1LL*n*a[il*ali];
rez1+=1LL*n*b[iJ*b[i];
sumA+=ali];

3

for(int i=1;i<=n;++i){
rez1-=1LL*2%sumAxb[i];

}
g<<rezl;
}
else{
for(int i=1;i<=n;++i)

frecvB[b[i]]++;

sumpartFrecv[0]=frecvB[0];
for(int i=1;i<=300000;++i)
{
sumpartFrecv[i]=sumpartFrecv[i-1]+frecvB[i];

}

int stQ,drQ,stP,drP;

for(int i=1;i<=n;++i){
stQ=-1; drQ=-1;
stP=-1; drP=-1;

28

stP=alil-min(ali], (int)sqrt(p));
stQ=alil-min(aliJ+1, (int)sqrt(q-1)+1);
drP=(int)sqrt(p)+alil;
drQ=(int)sqrt(qg-1)+1+alil;
int x=0;
if(stQ>=0){
x+=sumpartFrecv[stQ]l;
3
if(stP>=0)
x+=(sumpartFrecv[ali]l-1]-sumpartFrecv[stP-1]);

x+=(sumpartFrecv[drP]-sumpartFrecv[alil-11]);
x+=sumpartFrecv[30000]-sumpartFrecv[drQ-11];
g<<x<<" "

3

return 0;

using namespace std;

ifstream f("prietenie.in");

ofstream g("prietenie.out");

const int N = 200010;

const int M = 30002;

int cer,n,x,X,Y,A,B,C,D,0[N],S[M],P[M];

int64_t r,a,b;

int sum(int a,int b){
if(b<=0)return 0;
if(a>=M)return 0;
if(a<=0)a=1;
if (b>=M)b=M-1;
if(a>b)return 0;
return S[b]-S[a-117;

}

int main()

{
f>>cer>>n>>X>>Y;
for(int i=1;i<=n;i++){f>>x;r+=xxx;a+=x;0[i]=++x;}
for(int i=1;i<=n;i++){f>>x;r+=x*x;b+=x;S[++x]++;}
if(cer==1){r=r*n-axb*2;g<<r;return 0;}
for(int i=1;i<M;i++)S[i]+=S[i-11];
for(C=0;C*C<=X;C++,B--); for (A=B,D=C;D*D<Y;D++,A--); A++;D--;
for(int i=1;i<M;i++){A++;B++;C++;D++;P[i]=n-sum(A,B)-sum(C,D);}
for(int i=1;i<=n;i++)g<<P[O[i]]<<' ';g<<'\n’;
return 0;

29

3.4 Problema Teren

Propusa de: prof. Popa Daniel, Colegiul National ,Aurel Vlaicu”, Ordastie

Lordul John a decis ca a venit vremea sa insamanteze terenul sau. Terenul a fost impartit in
parcele organizate in NNV linii, pe fiecare linie fiind cate N parcele patrate, fiecare cu suprafata de
un metru patrat. Liniile au fost numerotate de sus in jos de la 1 la N, iar coloanele de la stanga
la dreapta de la 1 la V.

Fiind un aviator pasionat, a folosit avionul sau pentru a survola terenul in vederea Insamantarii.
Cand se afla In zbor deasupra cate unei parcele, arunca in aceasta o singura samanta. Lordul
realizeaza M zboruri deasupra terenului, iar in fiecare astfel de zbor se deplaseaza in cate o singura
directie, paralela cu laturile sau cu diagonalele terenului. Fiecare zbor i (cu 1 < i < M) este
definit printr-un set de patru valori, LS; C'S; LF; C'F;, unde (LS;, C'S;) sunt coordonatele (linia
si coloana) primei parcele in care a aruncat o samanta si (LF;, C'F;) sunt coordonatele parcelei
in care a aruncat ultima samanta, in cadrul acestui zbor.

La final, dupa insamantare, Lordul John doreste sa imprejmuiasca cu gard parcelele insamantate,
pentru a le separa de cele ramase neinsamantate sau de marginea terenului.

Se cunosc N, M, precum si valorile (LSy, C'Sy, LFy, CFy), (LSy, CSy, LFy, CF), ..., (LSy,
CSwy, LFy, CFyy) cu semnificatia din enunt.

Cerinte

1. Determinati numarul semintelor care sunt aruncate.

2. Determinati numarul de parcele care sunt insamantate.

3. Determinati lungimea gardului care trebuie sa separe suprafetele insamantate de cele nein-
samantate sau de marginea terenului.

Date de intrare

Fisierul teren.in contine pe prima linie trei numere naturale, C, N si M, unde C' este numarul
cerintei care trebuie rezolvata (care poate fi doar 1, 2 sau 3), iar N si M au semnificatia din
enunt.

Pe urmatoarele M linii se afla cate patru numere naturale, reprezentand seturile de valori care
definesc zborurile, in ordinea realizarii lor.

Numerele aflate pe aceeasi linie a fisierului sunt separate prin cate un spatiu.

Date de iesire

Fisierul teren.out contine numarul determinat pentru cerinta C.
Restrictii

« 1< N,LS,LF,CS,CF < 1000.
« 1< M < 100000

30

Puncte Restrictii
1 20 C =1, avionul se deplaseaza numai de la stanga la dreapta sau de sus in jos
2 15 C =1, avionul se poate deplasa in orice directie
3 20 C = 2, avionul se deplaseaza numai de la stanga la dreapta sau de sus 1n jos
4 15 C' = 2, avionul se poate deplasa in orice directie
5 30 C=3
Exemple
teren.in teren.out Explicatii
176 23 Se rezolva cerinta C' = 1.
2224
1353
1245 >
3562
5451
7557
.
Primul zbor este marcat de sageata rosie;
se survoleaza parcelele de la coordonatele
(2, 2), (2, 3) si (2, 4); la acest zbor se
arunca 3 seminte.
Al doilea zbor este marcat de sageata
albastru-deschis; la acest zbor se arunca 5
seminte.
In total, in cele 6 zboruri sunt aruncate 3
+5+4+4+ 4+ 3 =23 de seminte.
276 19 Se rezolva cerinta C' = 2.
2224
1353
1245 >
3562
5451
7557
A
Parcelele Insamantate sunt colorate cu
galben.

31

376 36 Se rezolva cerinta C' = 3.
2224
1353
1245 >
3562
5451
7557
L >

/

Gardurile folosite sunt marcate cu culoarea
rosie, aflate la marginea unor parcele
colorate cu galben.

3.5 Rezolvarea problemei Teren

Cerinta 1

Se citesc coordonatele de inceput ale insamantarii L1, C'1 si coordonatele de sfarsit L2, C2. Daca
L1==L2 la numarul de seminte aruncate se aduna abs(C1-C2)+1, altfel se aduna abs(L1 - L2)
+ 1.

Precalcule pentru Cerintele 2 si 3

Atat pentru cerinta 2 cat si pentru cerinta 3 se folosesc 5 matrici: matricea o pentru parcurgerile
orizontale, v pentru cele verticale, dp pentru cele paralele cu diagonala principala, ds pentru
parcurgerile paralele cu diagonala secundara. Pentru fiecare zbor/parcurgere se aplica difference
array. Deoarece parcurgerea este liniara difference array se aplica exact ca la vectori: Pentru
parcurgerile orizontale (unde L1 == L2):

o[L1][min(C1,C2)] + +;
o[L1|[max(C1,C2) + 1] — —;

Pentru parcurgerile verticale (unde C'1 == C2):

v[min(L1, L2)][C1] + +;
v[maz (L1, L2) + 1][C1] — —;

Pentru parcurgerile paralele cu diagonala secundara (unde L1+C'1 == L2+ (C?2): se interschimba
capetele a.i. L1 < L2 si apoi:

ds[L1])[C1] + +;
ds[L2 4 1][C2 — 1] — —;

Pentru parcurgerile paralele cu diagonala principald: se interschimba capetele a.i. L1 < L2 si
apoi

32

dp[L1][C1] + +;
dp[L2 + 1][C2 + 1] — —;

Se parcurg matricele si se fac adunarile corespunzatoare:

oli][j]+ = old][j — 1];
v[i][j]+ = v[i — 1][j};
dpli][j]+ = dpli — 1][j — 1];
ds[i][j]+ = ds[i — 1][j + 1J;

Intr-o matrice rezultat se marcheaza acele celule care sunt nenule in cel putin una din matricele
anterioare.

Cerinta 2

Pentru obtinerea rezultatului se numara cate valori nenule sunt in matricea rezultat.

Cerinta 3

Pentru a obtine rezultatul se numara pentru fiecare celula nenula cati vecini au valoarea 0.

3.6 Cod-sursa pentru problema Teren

using namespace std;

ifstream fin(DE

ofstream fout();

const int nm=1002;

int o[nm]Cnm], v[nm]Cnm], dpCnmlCnm], dsCnm]l[nm], rCnm][nml, n, m, k, i, j, L1, C1, L2, C2, c;
void afis(int al[nm][nm])

{
for(int i=1; i<=n; i++)
{
for(j=1; j<=n; j++) cout << alil[j] << :
cout << endl;
3
cout << endl;
}
void cerintal()
{
int sol=0;
for(int i=1; i<=m; i++)
{
fin >> L1 >> C1 >> L2 >> C2;
if(L1==L2)sol+=abs(C1-C2)+1;
else sol+=abs(L1-L2)+1;
3
fout << sol;
}

void pentruCerinta2_3()

33

{
for(int i=1; i<=m; i++)
{

fin >> L1 >> C1 >> L2 >> C2;

if(L1==L2){o[L1I[min(C1, C2)]1++; o[L1]1[max(C1, C2)+1]--;}

else if(C1==C2){vImin(L1, L2)I[C1]++; vImax(L1, L2)+11[C1]1--;}

else if(L1+C1==L2+C2)

{

if(L1>L2){swap(L1, L2); swap(C1, C2);}
ds[L1J[C1]++; ds[L2+1][C2-1]--;

else
{
if(L1>L2){swap(L1, L2); swap(Cl1, C2);}
dp[L1][C1]++; dp[L2+1][C2+1]--;
3
}
for(i=1; i<=n; i++)
for(j=1; j<=n; j++)
{
o[iJ[jl+=0[i1[j-11];
v[iJ[jl+=v[i-11[j];
dplil[j1+=dpli-11[j-11;
ds[i][jl+=ds[i-11[j+11];
rfillj1=Colil[j] + v[il[j] + dpl[il[j] + ds[i1[j1)>0;

3

void cerinta2()
{ int sol=0;
for(int i=1; i<=n; i++)
for(j=1; j<=n; j++)
if(rf[il[j1>0)sol++;
fout << sol;

3

void cerinta3()
{ int sol=0, k;
fin >> k;
for(int i=1; i<=n; i++)
for(j=1; j<=n; j++)
if(rfi1[j1!'=0)
{
sol+=(r[i-11[31==0)+(r[i1[j-11==0)+(r[i+1][j1==0)+(r[11[j+1]==0);
}
fout << sol;
3

int main()
{
fin >> ¢ >> n >> m;
if(c==1)cerintal();
else
{
pentruCerinta2_3();
if(c==2)cerinta2();
if(c==3)cerinta3();
3

return 0;

34

using namespace std;

ifstream f();
ofstream g()

int n, m, C;
int 1in[NJ[NJ, col[NJ[N], diagP[NI[N], diagS[NI[N], tot[NI[NJ;
int main()
{
f>>C>>n>>m;
int i, j, xs, ys, xd, yd;
if(C == 1)
{
int total = 0;
for(i = 1; i <= m; ++i)
{
f >> xs >> ys >> xd >> yd;
if(xs == xd) total += abs(ys - yd) + 1;
else if(ys == yd) total += abs(xs - xd) + 1;
else total += abs(xs - xd) + 1;

}
g << total << g
}
else
{

int total = 0;
for(i = 1; i <= m; ++i)
{
f >> xs >> ys >> xd >> yd;
if(xs == xd)
{
if(ys > yd) swap(ys, yd);
lin[xs]lys]++;
lin[xs][yd + 1]--;
3
else if(ys == yd)
{
if(xs > xd) swap(xs, xd);
col[xs][ys]++;
col[xd + 1]1[ys]--;
}
else
{
if(xs > xd) swap(xs,xd), swap(ys,yd);
if(yd >= ys) diagP[xs][ys]++, diagP[xd + 1][yd + 1]--;
else diagS[xs][ys]++, diagS[xd + 11[yd - 1]--;

3
for(i = 1; i <= n; ++i)
for(j = 1; j <= n; ++j)
{
1in[il[j] += lin[il[j - 11;
col[il[j] += colli - 11[3j1;
diagP[il[j] += diagP[i - 11[j - 11;
diagS[il[j] += diagS[i - 1]1[j + 11;
if(1in[i1031 > @ || col[il[j]1 > @ || diagP[il[j1 > @ || diagS[il[jl1 > 0)
tot[iI[j] = 1;

if(tot[il[j]) ++total;

35

36

if(C == 2)
g << total << :
else
{
total =
for(i = 1; i <= n; ++i)
for(j = 1; j <= n; ++J)
if(tot[illj1)
{

)

n - o

if(Mtot[i - 11[j1)total++;
if(1totli + 11[j1)total++;
if(Ttotl[il[j - 11)total++;
if(Mtot[il[j + 11)total++;
}
g << total << g
3
}

return 0;

Capitolul 4

OJI 2025, clasa a VIII-a

4.1 Problema Joc

Propusa de: stud. Dumitru Ilie, Facultatea de Matematica-Informatica, Universitatea Bucuresti

Jocul preferat al lui Aurel are o harta impartita in /N sectoare, numerotate, in ordine, de la 1 la
N. Fiecare sector i (1 <i < N) are asociate doua numere naturale reprezentand un decor, decor;
si un scor, scor;. Doua decoruri de acelasi tip sunt codificate prin acelasi numar natural.

O secventa formata din lg (lg > 2) sectoare aflate pe pozitii consecutive este numita riscanta
daca cel putin %g + 1 dintre sectoarele acesteia au asociat acelasi tip de decor, unde %g reprezinta
catul impartirii lui /g la 2.

Daca Aurel se afla pe sectorul s si are vizibilitatea v (0 < v < s — 1), el va ,vedea” pe harta

secventa de v + 1 sectoare consecutive, care se incheie cu s: s —v,s —v+1,...s.

La inceputul jocului, Aurel este pozitionat intr-un anumit sector (sector de start) si are o anumita
vizibilitate. La fiecare pas al jocului, Aurel, fiind pozitionat intr-un sector oarecare, efectueaza
una dintre actiunile:

« daca secventa pe care o ,vede” pe harta este riscanta, Aurel scade cu 1 vizibilitatea pe care
o are (astfel el spera ca secventa rezultata s nu mai fie riscanta);

« daca secventa pe care o ,vede” pe harta nu este riscanta, Aurel avanseaza, pozitionandu-se
in sectorul urmator, si creste cu 1 vizibilitatea (el se simte Incurajat si merge mai departe).

Jocul se termina cand el iese de pe harta, adica se afla dupa sectorul cu numarul N (ultimul).

Scorul obtinut este egal cu suma scorurilor sectoarelor in care el a fost pozitionat la fiecare pas
pe parcursul jocului (inclusiv scorul sectorului de start).

Cerinte

1. Determinati numarul de moduri in care Aurel poate incepe jocul, astfel incat prima secventa
pe care o ,vede” pe harta sa NU fie riscanta. Doua moduri de a Incepe jocul sunt considerate
diferite daca incep pe sectoare diferite sau daca au vizibilitatea diferita.

2. Determinati scorul obtinut daca Aurel porneste din sectorul 1 cu vizibilitatea 0.

Date de intrare

Fisierul de intrare joc.in contine pe prima linie numarul natural C' reprezentand cerinta care
trebuie sa fie rezolvata (1 sau 2). Pe a doua linie se afla numarul natural N reprezentand numarul

37

de sectoare. Pe a treia linie se afla N numere naturale, reprezentand decorurile asociate sectoa-
relor, in ordinea numerotarii acestora. Pe a patra linie se afla NV numere naturale, reprezentand
scorurile asociate sectoarelor, in ordinea numerotarii acestora. Numerele aflate pe aceeasi linie a
fisierului sunt separate prin cate un spatiu.

Date de iesire

Fisierul de iesire joc.out contine o singura linie pe care este scris numarul determinat pentru
cerinta C' din fisierul de intrare.

Restrictii

e Daca C' =1, atunci 1 < N <3000

e Daca C =2, atunci 1 < N < 100000

e 1 <decor; < N,pentrul <i< N

e 1 < scor; <1000000, pentrul << N

Puncte Restrictii

1 25 C=1, 1<N <800
2 21 C=1, 800< N <3000
3 24 C=2 1< N<9000
4 30 C =2, 9000 < N < 100000
Exemple
joc.in joc.out
1 10
5
11213
23115
2 16
5
11213
23115
Explicatie
9

Exemplul 1. Se noteaza cu st sectorul de start si cu v vizibilitatea; exista 10 moduri in care
Aurel poate Incepe jocul astfel Incat prima secventa vazuta sa nu fie riscanta:

1. st =1, v =0 (secventa 1)

2. st =2, v =0 (secventa 2)

3. st =3, v =0 (secventa 3)

4. st =4, v =0 (secventa 4)

5. st =5, v =0 (secventa 5)

6. st =3, v =1 (secventa 2,3)

7. st =4, v =1 (secventa 3,4)

8. st =5, v =1 (secventa 4,5)

9. st =5, v =2 (secventa 3,4,5)

10. st =5, v =3 (secventa 2,3,4,5)

w
oo

Exemplul 2. Aurel porneste din sectorul 1 cu vizibilitate v = 0. Scorul total este initial
scor; = 2.

» El vede doar sectorul 1, iar secventa vazuta nu este riscanta, deci avanseaza in sectorul 2 si
creste v cu 1. La scorul total se aduna scory = 3.

» Secventa vazuta, formata din sectoarele 1,2, este riscanta, deci scade v cu 1. Aurel este
acum 1n sectorul 2, cu v = 0. La scorul total se aduna scory = 3.

» Secventa curenta vazuta nu este riscantd, deci avanseaza in sectorul 3 si creste v cu 1. La
scorul total se aduna scors = 1.

« Secventa vazuta 2,3 nu este riscanta, deci avanseaza in sectorul 4 si creste v cu 1. La scorul
total se aduna scory, = 1.

« Secventa vazuta, formata din sectoarele 2,3,4 este riscanta, deci scade v cu 1. La scorul
total se aduna scory, = 1.

» Secventa vazuta 3,4 nu este riscanta, deci avanseaza in sectorul 5 si creste v cu 1. La scorul
total se aduna scors = 5.

» Secventa vazuta formata din sectoarele 3,4,5 nu este riscanta, deci avanseaza si se pozitio-
neaza dupa ultimul sector, terminand jocul. Scorul total obtinut este 2 +3 +3 + 1+ 1 +
1+ 5=16.

4.2 Rezolvarea problemei Joc

Cerinta 1 — O(N?)

Vom fixa cele doua valori st (1 < st < n)siv (0 < v < st) reprezentdnd inceputul secventei
si vizibilitatea. Pentru fiecare secventa determinata de st si v vom aplica unul dintre algoritmii
liniari de calculare a elementului majoritar (resursa: Infoarena - Problema majoritatii votului).
Astfel putem verifica, pentru fiecare secventa daca este riscanta.

Cerinta 1 — O(N?)

Vom folosi un vector de frecventa, in care vom contoriza numarul de aparitii pentru fiecare decor.
Sa consideram ca am determinat vectorul de frecventa pentru secventa [i,j] care incepe la pozitia
i si se termina la pozitia j (1 < i < j < n). Cand vom trece la secventa [i,j + 1] vom adauga
un singur element, deci putem actualiza usor vectorul de frecventa. Elementul majoritar se poate
recalcula in momentul in care adaugam un element in vectorul de frecventa (fie raméne valoarea
precedenta, fie devine noua valoare adaugata). Dupa ce toate secventele cu capat stang ¢ au fost
analizate, resetam vectorul de frecventa pentru a-1 refolosi pentru subsecventele cu capatul stang
v+ 1.

Cerinta 2 — O(N?)

Vom simula efectiv jocul. Pentru a afla daca o subsecventa este sau nu riscanta vom folosi un
algoritm liniar de aflare a elementului majoritar (similar solutiei de la cerinta 1). Acesta solutie
are complexitatea O(N?) in cazul cel mai defavorabil.

Cerinta 2 — O(N)

Pentru a optimiza determinarea elementului majoritar din solutia precedenta, vom folosi un vector
de frecventa, similar solutiei 2 de la cerinta 1. Sa presupunem ca ajungem pe subsecventa [s —v,s]
si stim daca aceasta contine sau nu element majoritar, care este acesta si numarul sau de aparitii.
Avem doua cazuri:

39

o Secventa este riscantd. In acest caz stim ci existd element majoritar (fie acesta emaz).
Jucatorul va micsora vizibilitatea, astfel excluzand elementul de pe pozitia s —v. Datorita
faptului ca elementul emax avea (v+1)/2+1 aparitii In subsecventa [s —wv,s], acesta ramane
elementul cu numar maxim de aparitii si in subsecventa [s — v + 1,s], deci ar fi posibil ca
acesta sa ramana element majoritar sau sa nu mai existe element majoritar.

« Secventa nu este riscanta. In acest caz stim ca nu existi element majoritar. Cand adaugam
un element In subsecventa avem doua cazuri posibile. Fie acesta are acum numarul necesar
de aparitii, caz In care actualizam emax, fie acesta nu are suficiente aparitii, caz in care nu
avem element majoritar.

Complexitatea acestei solutii este O(N) timp si O(/N) memorie. Exista si alte solutii, atat pentru
punctaj integral, cat si pentru punctaje partiale.

4.3 Cod-sursa pentru problema Joc

const int NMAX=100005, NMAX2=1024;
int N;
int decor[NMAX], scor[NMAX], cnt[NMAX];
int cerinta_1()
{ int i, j, maxAp, rez=0;
for (i=0; i<N; ++i)
{
for (j=i, maxAp=decor[i]; j<N; ++j)
{
if (++cnt[decor[jl]>cnt[maxAp]) maxAp=decor[j];
if (1(i<j && cnt[maxApl>(j-i+1)/2)) ++rez;
}
for (j=N-1;j>=i;--j) --cntl[decor[j]];
3
return rez;
}
int cerinta_2()
{ int i, j, maxAp, total=0;
for (i=j=0, ++cnt[maxAp=decor[0]1]; j<N;)
{ total+=scor[jl;
if (j>i && cntlmaxApl>(j-i+1)/2) --cnt[decor[i++]];

else
{++3;
if (G<N)
if (++cntldecor[jl1>cnt[maxApl) maxAp=decor[j];
}
3
return total;
}
int main()
{ FILE* f=fopen(,), *g=fopen(R);
int i, C;
fscanf(f, , &, &N);
for (i=0;i<N;++i) fscanf(f, , decor+i);
for (i=0;i<N;++i) fscanf(f, , scor+i);
fprintf(g, , C==1 ? cerinta_1() : cerinta_2());
fclose(f); fclose(g);
return 0;
}

40

4.4 Problema Reducere

Propusa de: prof. Emanuela Cerchez, Colegiul National ,,Emil Racovita” lasi

O operatie de reducere aplicata asupra unui sir consta in selectarea unui numar prim p si a
unor elemente din sirul dat care sunt divizibile cu p si impartirea acestora la p.

Asupra unui sir format din n numere naturale nenule se aplica o succesiune de operatii de reducere,
pana cand toate elementele sirului devin egale. Valoarea finala a elementelor sirului este denumita
valoare de egalitate.

Valoarea de reducere a unui sir este cea mai mare dintre valorile de egalitate care se pot obtine
in urma aplicarii unor operatii de reducere asupra acestui sir.

Cerinte

1. Determinati valoarea de reducere pentru un sir dat.
2. Determinati numarul minim de operatii de reducere care trebuie sa fie aplicate sirului dat
pentru a obtine valoarea de reducere.

Date de intrare

Fisierul de intrare reducere.in contine pe prima linie un numar natural C', reprezentand cerinta
care trebuie sa fie rezolvata (1 sau 2), pe a doua linie un numar natural n, iar pe urmatoarele n
linii cate un numar natural, reprezentand cate un element al sirului.

Date de iesire

Fisierul de iesire reducere.out va contine o singura linie, pe care va fi scris numarul determinat
pentru cerinta C' din fisierul de intrare.

Restrictii

e 2<n <2000
» Elementele sirului sunt numere naturale nenule < 10'2,

Puncte Restrictii
1 34 C=1
2
3

37 C' = 2, valorile din sir < 10°

29 C = 2, fara restrictii suplimentare

reducere.in reducere.out

10

12

41

10

12

Explicatie

Operatia de reducere 1: Impartim prin 3 pe 6 si pe 12 = 10 2 4

Operatia de reducere 2: Impartim prin 5 pe 10 = 22 4

Operatia de reducere 3: Impartim prin 2 pe 4 = 22 2

Valoarea de reducere este 2, aceasta fiind cea mai mare dintre valorile de egalitate posibile.

4.5 Rezolvarea problemei Reducere

Cerinta 1.

Pentru a determina valoarea de reducere, trebuie sa determinam cel mai mare divizor comun
al valorilor din secventa. Pentru a determina cmmdc pentru doua valori utilizam algoritmul lui
Euclid. Pentru a determina cmmdc pentru o secventa de n valori utilizam asociativitatea operatiei
cmmdc, deci determinam la fiecare pas cmmdc dintre cmmdc-ul curent si urmatoarea valoare din
secventa: cmmde(ay, ag, - - - a,) = cmmde(...(cmmde(cmmdce(ay, az), as) - - ay) -«).

Cerinta 2.

Descompunem in factori primi fiecare valoare din secventa si determinam pe parcurs descompu-
nerea in factori primi a celui mai mic multiplu comun al acestor valori (toti factorii primi care
apar In descompunerile valorilor din secventa la puterea cea mai mare). Factorii primi comuni
la puterea cea mai mica constituie cmmdec (deci 1i pastram in valoarea de reducere). Numarul
minim de operatii care trebuie sa fie aplicate pentru a obtine valoarea de reducere este egal cu
suma exponentilor factorilor primi din descompunerea in factori primi a cmmme/cmmde.

Pentru subtask-ul 2, restrictiile permit utilizarea unui vector nr de 10° elemente, unde nr; =
puterea factorului prim 4 in descompunerea factori primi a cmmme/cmmde. Pentru a obtine
punctele pe acest subtask nu este necesar sa optimizam descompunerea in factori primi utilizand
generarea prealabila a numerelor prime cu ciurul lui Eratostene, dar, pentru subtask-ul 3, este
necesar sa descompunem in factori primi cautand divizorii, doar printre numerele prime pana la
radicalul numarului.

Pentru subtask-ul 3 restrictiile nu permit declararea vectorului nr. Ca urmare vom retine o
descompunere in factori primi ca o lista de factori primi si puterile acestora, lista in care factorii
primi apar in ordine crescatoare.

Pentru fiecare numar din secventa:

o descompunem numarul in factori primi;
o printr-un algoritm similar cu algoritmul de interclasare, actualizam descompunerea in factori
primi a cmmmec (in cmmme trebuie sa apara toti factorii primi la puterea cea mai mare).

nal simplificam cmmmec cu cmm reurgan mpunerile in ri primi ra si
La final simplificam c ¢ cu cmmdc, parcurgand desco erile in facto ale acestora si,
pentru factorii primi comuni, scazand din puterea factorului prim din cmmmec puterea factorului
prim respectiv din cmmdec.

42

Suma puterilor factorilor primi ai cmmmec dupa simplificarea cu cmmdc va fi numarul minim de

operatii de reducere necesare.

4.6 Cod-sursa pentru problema Reducere

using namespace std;

ifstream fin("reducere.in");

ofstream fout("reducere.out");

struct factor {long long int d; short int p;};
bool ciur[VMAX];

int prime[PMAXT;

void eratostene();

long long int cmmdc ();

int ¢, n, m, nrp;

long long int cmd;

factor D[LGMAX], dx[LGMAX], rez[LGMAX*NMAX], aux[LGMAX*NMAX];
int 1gD, lgx, lgrez;

long long int nr[NMAX];

long long int cerinta2();
void descompunere(long long int x, factor dx[], int & 1lgx);

int main()
{int i;
fin>>c>>n;
for (i=0; i<n; i++) fin>>nr[i];
cmd=cmmdc () ;
if (c==1)
fout<<cmd<<'\n';
else
{eratostene();
fout<<cerinta2()<<'\n';
}

return 0;

b

void eratostene()
{int i, j;
for (i=3; i*xi<VMAX; i+=2)
if (ciur[i]==0)
for (j=i*i; j<VMAX; j+=i)
ciur[jl=1;
prime[0]=2; nrp=1;
for (i=3; i<VMAX; i+=2)
if (ciur[i]==0) prime[nrp++]=i;

}

long long int cmmdc()

{int 1i;

long long int d, x, r;

d=nr[0];

for (i=1; i<n; i++)
{x=nr[i];
while (x)

43

{r=d%x;

d=x;
X=r;
3
3
return d;
}
void descompunere(long long int x, factor dx[], int & 1lgx)
{int i, m;
lgx=0;

for (i=0; i<nrp && (long long int)primel[il*prime[il<=x; i++)
if (x%prime[i]==0)
{
m=0; while (x%prime[i]==0) {m++; x/=primel[il];}
dx[1lgx].p=m; dx[lgx].d=prime[i]; lgx++;
}
if (x>1) {dx[lgx].d=x; dx[lgx].p=1; lgx++;}
}

void actualizeaza()
{int i=0, j=0, k=0;
while (i<lgx && j<lgrez)
if (dx[i].d==rez[j].d)
{aux[k].d=dx[i].d; aux[k].p=max(dx[i].p, rez[jl.p); i++; j++; k++;}
else
if (dx[i].d<rez[j].d)
aux[k++]=dx[i++];
else
aux[k++]=rez[j++];
while (i<lgx) aux[k++]=dx[i++];
while (j<lgrez) aux[k++]=rez[j++];
for (i=0; i<k; i++) rez[iJ=aux[il;
lgrez=k;
}
long long int cerinta2()
{int i, j;
long long int nrop=0;
descompunere(cmd, D,1lgD);
descompunere(nr[0],rez,lgrez);
for (i=1; i<n; i++)
{descompunere(nr[i],dx,1gx);
actualizeaza();}
i=0; j=0;
while (i<lgD)
if (DLil.d==rez[jl.d) {rez[jl.p-=D[il.p; i++; j++;}
else j++;
for (i=0; i<lgrez; i++)
nrop+=rez[i].p;
return nrop;

3

44

Partea a II-a

Olimpiada Nationala de Informatica
- etapa nationala -

Botosani, 14-18 aprilie 2025

45

Capitolul 5

ONI 2025, clasa a V-a

5.1 Problema Cartonase

Propusa de: prof. Marius Nicoli, Colegiul National “Fratii Buzesti”, Syncro Soft, Craiova

Maria inventeaza mereu cate ceva si il provoaca la joaca pe fratele ei mai mic Petru. De data
aceasta alege N cartonase, pe care sunt Inscrise valorile naturale distincte de la 1 la N (fiecare
astfel de numar apare pe cate un singur cartonas), le amesteca si le aseaza unul langa altul intr-un
sir. Dupa amestecare numeroteaza cartonasele cu valori de la 1 la N, dupa ordinea asezarii in
sir. Apoi i formuleaza diverse cerinte lui Petru. Petru a invatat sa programeze si acum doreste
sa scrie un program pentru a-i raspunde Mariei repede si fara sa se mai gandeasca mult.

Cerinte
Maria formuleaza lui Petru cerinte de urmatoarele tipuri:

1. Tpi spun un numar poz si trebuie sa determini cartonasul numerotat cu cea mai mare valoare
r astfel incat primele r cartonase din sir au inscrisa o valoare strict mai mica decat cea
scrisa pe cartonasul numerotat cu poz. Daca nu exista niciun astfel de cartonas, pentru r
se stabileste valoarea 0.

2. Determina toate valorile p cu proprietatea ca pe primele p cartonase se afla Inscrise toate
numerele naturale de la 1 la p.

3. Determina toate valorile p cu proprietatea ca pe primele p cartonase se afla inscrise exact
p — 1 dintre numerele naturale de la 1 la p.

Date de intrare
Fisierul de intrare cartonase.in contine:

o pe prima linie numarul C, reprezentand cerinta de rezolvat (1, 2 sau 3);

 pe linia a doua se afla numarul N, cu semnificatia din enunt;

« pe linia a treia, se afla, separate prin cate un spatiu, N valori naturale distincte, cuprinse
intre 1 si N, reprezentand valorile inscrise pe cartonase in ordinea din sir, dupa amestecare;

o daca C' =1, pe linia a patra se afla valoarea poz.

Numerele aflate pe aceeasi linie sunt separate prin cate un spatiu.

Date de iesire

Fisierul de iesire cartonase.out contine:

47

e Daca C =1, in fisierul de iesire se va afla valoarea r cu semnificatia din enunt.

e Daca C' = 2 sau C' = 3, In fisierul de iesire se vor afisa, separate prin cate un spatiu,
valorile lui p care Indeplinesc conditiile din cerinta corespunzatoare, in ordine crescatoare.
Se garanteaza ca exista cel putin o astfel de valoare.

Restrictii

e 10 <3
« 1 < N <100000;
e 1 <poz<N.

Puncte Restrictii

#
1 23 C=1
2
3

41 C=2
36 C=3
Exemple
cartonase.in cartonase.out Explicatii
1 2 C =1, poz = 5, pe cartonasul 5 se afla
6 valoarea 4. Primele doua cartonase din
g 16245 sirul dat au inscrise valori mai mici decat 4
iar al treilea are o valoare mai mare.

2 36 C' = 2, pe primele 3 cartonase se afla
6 valorile 1, 2, 3 si, de asemenea, pe primele
312645 6 cartonase se afla valorile 1, 2, 3, 4, 5, 6.
3 1245 C = 3, pe primul cartonas (p = 1) se afla
6 p — 1 = 0 valori conform cerintei. Pe
312654

primele p = 2 cartonase se afla p —1 =1
valori conform cerintei (1). Pe primele

p = 3 cartonase se afla 3 valori conform
cerintei (1, 2, 3). Pe primele p =4
cartonase se afla p — 1 = 3 valori conform
cerintei (1, 2, 3). Pe primele p =5
cartonase se afla p — 1 = 4 valori conform
cerintei (1, 2, 3, 5). Pe primele p =6
cartonase se afla 6 valori conform cerintei

(1,2, 3,4, 5, 6).

5.2 Rezolvarea problemei Cartonase

Cerinta 1

Pentru cerinta 1 este suficient sa parcurgem elementele vectorului care preced pozitia poz data si
sa ne oprim la prima valoare care este mai mare decat v[poz], afisind pozitia respectiva. Daca nu
sunt astfel de valori inaintea pozitiei poz, atunci solutia va fi poz.

48

Cerinta 2

Pentru a rezolva cerinta 2, traversam vectorul element cu element si la pozitia curenta decidem
daca o afisam sau nu.

O prima abordare este sa parcurgem iarasi elementele de la Inceput pana la pozitia curenta si
sa verificam daca toate sunt mai mici sau egale cu valoarea pozitiei curente. Timpul de calcul
obtinut este de ordinul O(N?) si aceastd solutie nu se va Incadra in timp pentru toate datele de
test.

Tinand insa cont ca toate elementele vectorului sunt distincte si au valori de la 1 la N, observam
ca pozitia curenta ¢ este una care trebuie afisata daca si numai daca maximul din vector dintre
elementele aflate pana la pozitia ¢ este egal cu i (valoarea pozitiei curente).

Astfel, scriem un algoritm de calcul al maximului dintr-un vector, iar la pozitia curenta 7 este
suficient sa-1 afisam pe ¢ daca si numai daca maximul de pana acum este ¢. Aceasta abordare are
timp de calcul de ordin O(N).

Cerinta 3

Solutia optima pentru cerinta 3 este asemanatoare cu cea descrisa pentru cerinta 2. De data
aceasta Insa, la pozitia curenta i este necesar sa pastram atat maximul cat si al doilea maxim.
Observam ca putem decide sa afisam pozitia ¢ daca primul maxim este strict mai mare decat 7 si
al doilea maxim este mai mic sau egal cu i. Avem, de asemenea, timp de calcul de ordin O(N).

5.3 Cod-sursa pentru problema Cartonase

using namespace std;
int n, ¢, i, poz, maxim, maximl1, maxim2, nr, f[DIM], v[DIM];
int main () {
ifstream fin ();
ofstream fout(R
fin>>c>>n;
for (i=1;i<=n;i++) {
fin>>v[i];
fLvIill++;
}
if (c == 1) {
fin>>poz;
for (i=1;i<=poz;it++)
if (v[i] >= v[pozl])

break;
fout<<i-1<< :
return 0;
3
if (c == 2) {
maxim = 0;
nr = 0,

for (i=1;i<=n;i++) {
if (v[il > maxim)
maxim = v[i];

if (maxim == i) {
nr++;
if (nr !'=1)

49

fout<< :

fout<<i;
3
}
fout<< :
return 0;
3
if (c == 3) {
maximl = 0;
maxim2 = 0;
nr = 0;
for (i=1;i<=n;i++) {
if (v[il > maximl) {
maxim2 = maximl;
maximl = v[il];
} else
if (v[il > maxim2)
maxim2 = v[il];
if (maximl > i && maxim2 <= i) {
nr++;
if (nr!=1)
fout<< :
fout<<i;
3
}
fout<< :
}

return 0;

5.4 Problema Casute

Propusa de: Dan-Constantin Spatarel, Bucuresti

Exista N casute (patratele), asezate in ordine, de la stanga la dreapta, numerotate de la 1 la N.
In interiorul fiecarei casute putem scrie cate un numar natural. Initial, In fiecare casuta scriem
acelasi numar 0. Executam, in ordine, () operatii, care pot fi de trei tipuri:

o Primul tip de operatie se codifica prin 1 st dr nr si inseamna ca In fiecare casuta cu indicii
intre st inclusiv si dr exclusiv stergem numerele care existau inainte si scriem in locul lor
acelasi numar nr.

« Al doilea tip de operatie se codifica prin 2 poz si rezultatul operatiei este numarul aflat in
casuta cu indicele poz.

o Al treilea tip de operatie se codifica prin 3 st dr si rezultatul operatiei este numarul de
aparitii al valorii celei mai mari din casutele cu indicii intre st inclusiv si dr exclusiv.

Cerinte

Determinati rezultatele tuturor operatiilor de tip 2 sau 3, in ordinea executarii acestora.

Date de intrare

Fisierul de intrare casute.in contine pe prima linie doua numere naturale N si () separate printr-
un spatiu, cu semnificatia din enunt. Pe fiecare dintre urmatoarele () linii se afla codificarile celor
() operatii.

Fiecare linie care codifica o operatie Incepe cu un numar natural, reprezentand tipul operatiei,
care poate fi 1, 2 sau 3 si este urmat de un spatiu.

o Daca tipul operatiei este 1, atunci urmeaza trei numere naturale separate prin cate un
spatiu: st, dr si nr, cu semnificatia din enunt.

» Daca tipul operatiei este 2, atunci urmeaza un singur numar natural poz, cu semnificatia
din enunt.

» Daca tipul operatiei este 3, atunci urmeaza doua numere naturale separate printr-un spatiu
st si dr, cu semnificatia din enunt.

Date de iesire

Fisierul de iesire casute.out contine, pentru fiecare operatie de tip 2 sau 3, In ordinea in care
acestea se regasesc In fisierul de intrare, pe linii separate, cate un numar natural reprezentand
rezultatul operatiei corespunzatoare.

Restrictii

o () < 3000;

« N <10%

1 <st <dr < N + 1 pentru orice operatie de tipul 1 si 3;

e 1 <poz < N pentru orice operatie de tipul 2;

1 < nr < 3000 pentru orice operatie de tipul 1;

 in tabelul de mai jos, notam Op = {1,2} daca exista numai operatii de tipul 1 si 2, sau
Op ={1,2,3} daca exista operatii de toate tipurile (1, 2 si 3);

 in tabelul de mai jos, notam D = 1 daca oricare dintre valorile st, dr si poz apar intr-o
singura operatie, sau D = 0 daca se pot si repeta.

51

Puncte Restrictii

1 25 N <3000, D=0, Op={1,2}

2 25 N <3000, D=0, Op={1,2,3}

3 25 N<10° D=1, Op=1{1,2}

4 15 N <107, D=1, Op=1{1,23}

5 10 N<10°, D=0, Op={1,23}

Exemple
casute.in casute.out Explicatii

9 12 0 Sunt N =9 casute. Initial numerele din
1374 5 cele 9 casute sunt:
A : 000000000

5 1 5 Dupa prima operatie: 1 3 7 4, numerele
22 1 devin:
23 1 004444000 (scriem 4 pe pozitiile 3, 4,
29 1 5, 6)
; ; ;0 Dupa a doua operatie: 1 2 4 5, numerele
312 devin:
1141 055444000 (scriem 5 pe pozitiile 2, 3)
2.1 Dupa a treia operatie: 1 6 10 3, numerele

devin:

055443333 (scriem 3 pe pozitiile 6, 7,
8, 9)

Rezultatul pentru a patra operatie: 2 1
este 0.

Rezultatul pentru a cincea operatie: 2 2
este 5.

Rezultatul pentru a sasea operatie: 2 3
este 5.

Rezultatul pentru a saptea operatie: 2 9
este 3.

Rezultatul pentru a opta operatie: 3 1 10
este 2, deoarece maximul din toate casutele
este b iar acesta apare de doua ori.
Rezultatul pentru a noua operatie: 3 5 8
este 1, deoarece maximul din casutele cu
valorile: 4 3 3 este 4 iar acesta apare o
data.

Rezultatul pentru a zecea operatie: 3 1 2
este 1, deoarece maximul din casutele cu
valorile: 0 este O iar acesta apare o data.
Dupa a unsprezecea operatie: 114 1,
numerele devin:

111443333 (scriem 1 pe pozitiile 1, 2,
3)

Rezultatul pentru a doisprezecea operatie:
2 1 este 1.

52

5.5 Rezolvarea problemei Casute

Cazurile 1 si 2 (50 de puncte)

Daca N < 3000 atunci putem folosi un vector de dimensiune N+1 (deoarece vectorii sunt indexati
de la 0, nu de la 1 ca in problema) pentru a tine evidenta numerelor naturale aflate in fiecare
casuta pe parcursul executarii celor () operatii.

Cu ajutorul unui vector putem rezolva fiecare dintre cele 3 operatii relativ usor, astfel:

1. Operatiile de primul tip se rezolva cu o atribuire In cadrul unei structuri repetitive de tip

for.

2. Raspunsul pentru de al doilea tip de operatie se obtine accesand elementul de pe pozitia
poz din vector.

3. Raspunsul pentru de al treilea tip de operatie se obtine prin determinarea maximului si prin
contorizarea numarului de aparitii al acestuia in vector, in intervalul st inclusiv dr exclusiv.

Complexitatea spatiu: O(NV)
Complexitatea timp: O(Q - N)

Cazurile 1 si 3 (50 de puncte)

Avem de raspuns numai la operatii de tip 2.

Observam ca rezultatul unei operatii de tip 2 depinde doar de ultima operatie de tip 1 care a
afectat casuta poz inainte de executarea operatiei de tip 2.

Deoarece () < 3000 putem stoca toate operatiile, in ordinea in care trebuie executate (de exemplu
cu ajutorul a 5 vectori cu denumirile: tip, st, dr, nr si poz).

Putem gasi raspunsul pentru fiecare operatie de tip 2 astfel: cautam operatia anterioara, cea mai
recenta, de tip 1, cu proprietatea: st; < pozy < dry - raspunsul este nr;. Daca nu exista nicio
astfel de operatie atunci raspunsul este 0.

Daca observam ca exista o echivalenta intre procesul de initializare a casutelor cu valoarea 0 si
operatia fictiva tip = 1 st = 1 dr = N + 1 nr = 0, atunci o alternativa, pentru a evita cazul
particular de mai sus, este sa adaugam, inainte de citirea operatiilor din fisierul de intrare, aceasta
operatie.

Complexitatea spatiu: O(Q)
Complexitatea timp: O(Q?)

Cazurile 1, 2 si 3 (75 de puncte)

Putem combina cele doua solutii de mai sus, intr-o singura sursa, astfel: Daca N < 3000 atunci
rezolvam problema folosind prima solutie, altfel rezolvam problema folosind a doua solutie.

Toate cazurile (100 de puncte)

Dacd N = 107, atunci orice fel de solutie care va Incerca si retind valorile din fiecare cisuta va
obtine verdictul limita de memorie depasita. Se impune astfel sa economisim memoria utilizata.

Putem observa ca toate cele N casute pot fi impartite in intervale maximale (care nu mai pot fi
extinse) de casute consecutive cu proprietatea ca orice operatie de tip 1:

93

« fie nu modifica niciuna dintre casutele din interval;
 fie modifica toate casutele din interval.

De aceea, daca am identifica aceste intervale, am putea retine pentru fiecare dintre ele un singur
numar natural: valoarea din fiecare dintre casutele din interval.

Sa analizam urmatorul exemplu: N = 50 si 4 operatii de tipul 1 (inclusiv operatia suplimentara
echivalenta cu initializarea):

Intervale 1.5 16..16 | 17..24 | 25...31 | 32...35 | 36...41 | 42...50
index 1 6 17 25 32 36 42 51
tip=1 st=1 dr=51 nr=0 0 0 0 0 0 0 0
tip=1 st=6 dr=42 nr=6 0 6 6 6 6 6 0
tip=1 st=25 dr=36 nr=4 | 0 6 6 4 4 6 0
tip=1 st=17 dr=32 nr=5 | 0 6 5)) 4 6 0

Intervalele, vectorul index si valorile dupa fiecare dintre cele 4 operatii

Observam ca toate intervalele pot fi descrise cu ajutorul vectorului index (descris in tabelul de
mai sus) prin doua elemente consecutive ale sale. Mai mult decat atat, observam ca elementele
vectorului index sunt toate valorile st si dr de la toate operatiile de tip 1, sortate crescator.

In acest moment putem rezolva usor operatiile de tip 2, identificind din ce interval face parte
POZ.

Operatiile de tip 3 sunt mai dificil de rezolvat, deoarece trebuie sa identificam atat intervalele
care contribuie la rezultatul unei operatii cat si lungimea intersectiei dintre aceste intervale si
intervalul operatiei.

O modalitate facila de a simplifica rezolvarea, atat pentru operatiile de tip 3 cat si pentru cele
de tip 2 este sa adaugam in plus la vectorul index atat valorile st si dr de la toate operatiile de
tip 3 cat si valorile poz de la toate operatiile de tip 2. Acest proces va avea ca efect fragmentarea
suplimentara a intervalelor, astfel incat ele isi vor pierde proprietatea de maximalitate insa cu
urmatoarele beneficii:

« valorile poz ale operatiilor de tip 2 se vor afla numai la inceputul unui interval;
« intervalele formate sunt complet incluse in intervalul st inclusiv dr exclusiv al oricarei
operatii de tip 3.

Algoritm

Folosind tehnica descrisa in a doua solutie, vom stoca toate operatiile, in ordinea in care trebuie
executate.

Intr-un vector numit index vom pune laolalta toate valorile st, dr si poz de la toate operatiile,
inclusiv valorile speciale 1 si N 4 1 corepunzatoare operatiei fictive tip =1 st =1 dr = N + 1
nr = 0, echivalenta cu procesul de initializare a casutelor.

Vom sorta elementele vectorului index si apoi vom elimina dublurile (elementele care se repeta).

Similar cu prima solutie, vom folosi un vector de aceeasi lungime ca si vectorul index pentru a
stoca valorile celulelor din fiecare interval in parte.

Operatiile de primul tip se rezolva astfel:

« cu ajutorul unei structuri repetitive se cauta pozitia elementului st in vectorul indez;
« cu ajutorul unei structuri repetitive se cauta pozitia elementului dr in vectorul index;

o4

e 1n cadrul celei de-a doua structuri repetitive se modifica vectorul de valori.
Raspunsul pentru de al doilea tip de operatie se obtine astfel:

« cu ajutorul unei structuri repetitive se cauta pozitia elementului poz in vectorul index;
« rezultatul operatiei se regaseste in vectorul de valori la pozitia gasita la pasul anterior.

Raspunsul pentru de al treilea tip de operatie se obtine astfel:

» cu ajutorul unei structuri repetitive se cauta pozitia elementului st in vectorul index;

e cu ajutorul unei structuri repetitive se cauta pozitia elementului dr in vectorul index;

e 1n cadrul celei de-a doua structuri repetitive se calculeaza valoarea maxima din vectorul de
valori;

» atunci cand actualizam maximul, resetam numarul sau de aparitii la lungimea intervalului
curent;

 de fiecare data cand gasim o noua aparitie maximului, crestem numarul sau de aparitii cu
lungimea intervalului curent.

Operatia de eliminare a dublurilor din vectorul index poate fi optionala. In functie de detaliile
de implementare, unele implementari pot lua punctaj maxim desi nu elimina dublurile.

Complexitatea spatiu: O(Q)
Complexitatea timp: O(Q?)

5.6 Cod-sursa pentru problema Casute

int main() {
std::ifstream fisier_in()
std::ofstream fisier_out();
int N, Q;
fisier_in >> N >> Q;
int tip[Ql;
int st[Ql;
int dr[Ql;
int nr[Ql;
int poz[Ql;

int n = 0;

int index[2 + 2 * Q];

index[n++] K

index[n++] N+ 1;

for (int i 0; i <Q; i++) {
fisier_in >> tip[il;

if (tiplil == 1) {
fisier_in >> st[i] >> dr[i] >> nr[i];
index[n++] = st[il];
index[n++] = dr[i];

} else if (tip[i] == 2) {
fisier_in >> poz[il;
index[n++] = poz[il;

} else {
fisier_in >> st[i] >> dr[i];
index[n++] = st[i];
index[n++] = dr[il];

for (int i = 0; i <n; i++) {

95

for (int j =1 + 1; j <n; j+t) {
if (index[i] > index[j]) {
int tmp = index[il;
index[i] = index[j1;
index[j] = tmp;
3
3
}
int k = 1;
for (int i = 1; i < n; i++) {
if (index[i - 1] < index[i]) {
index[k++] = index[i];
3
}
n =k;
int aln];
k = 0;
while (index[k] < 1) {
k++;
}
while (index[k] < N + 1) {
alk] = 0; k++;
}
for (int i = 0; 1 < Q; i++) {
if (tipl[i]l == 1) {
k = 0;
while (index[k] < st[i]) {
k++;
3
while (index[k] < dr[il]) {
alk]l = nrli]; k++;

3
} else if (tipl[il == 2) {
k = 0;
while (index[k] < poz[il) {
k++;
3
fisier_out << a[k] << g
} else {
k = 0;
while (index[k] < st[i]) {
k++;
}
int maxim = a[k], aparitii = 0;
while (index[k] < dr[il) {
if (maxim < alk]) {
maxim = a[k]; aparitii = 0;

}
if (maxim == al[k]) {
aparitii += index[k + 1] - index[k];

}
k++;

3

fisier_out << aparitii << g

3
3

return 0;

}

o6

5.7 Problema Perechi

Propusa de: stud. Jonathan Mogovan, Universitatea ,Babes-Bolyai”, Cluj-Napoca, Cluj

Gigel a primit o sarcina interesanta: se da un sir de N numere numere naturale si un numar
natural K.

Cerinte

1. Fie X primul numar din sir. Determinati pozitia celui mai mic numar Y care apartine
sirului, astfel incat suma celor doua numere X si Y sa fie divizibila cu K. Daca valoarea
Y, cu proprietatea precizata, apare de mai multe ori in sir, se ia in considerare pozitia cea
mai din dreapta. Exista cel putin un astfel de numar Y, care apartine sirului.

2. Determinati numarul minim de elemente care trebuie eliminate din sir astfel incat elementele
ramase sa poata fi grupate in perechi disjuncte (fiecare element ramas apartine unei singure
perechi), cu proprietatea ca suma celor doua valori din fiecare pereche este divizibila cu K.

Date de intrare
Fisierul de intrare perechi.in contine:

 pe prima linie, un numar natural C reprezentand cerinta de rezolvat (1 sau 2);
» pe cea de-a doua linie, doua numere naturale N si K, cu semnificatia din enunt;
» pe cea de-a treia linie, N numere naturale, reprezentand elementele sirului.

Numerele aflate pe aceeasi linie sunt separate prin cate un spatiu.

Date de iesire

Fisierul de iesire perechi.out contine, pe prima linie, un numar natural, reprezentand numarul
determinat conform cerintei C.

Restrictii

e 2< N <10%

e 1<K <10%

toate elementele sirului au valori cuprinse intre 0 si 10%;

pentru C = 1, pozitia primului element X nu coincide cu pozitia lui Y;
o pereche este formata din exact doua elemente.

Puncte Restrictii
1 31 C=1
2 69 C=2

o7

Exemple

perechi.in perechi.out Explicatii
1 6 C=1 N=7, K = 3, sirul este
73 (2,3,4,5,1,1,2], iar X = 2. Valorile lui Y’
2345112

din sir pentru care (X +Y)%3 = 0 sunt: 4
(pozitia 3, deoarece 2+ 4 =6) si 1
(pozitiile 5 si 6, deoarece 2+ 1 = 3).
Astfel, valoarea minima ceruta cu
proprietatea precizata este Y = 1, iar cea
mai din dreapta pozitie a sa este 6.

2 2 C=2,N=4 K =4, sirul este [1,2,3,4].
4 4 Daca eliminam elementele 2 si 4, ramén 1
1234

si 3, care formeaza o pereche cu suma
143 =4, divizibila cu 4. Raspunsul este 2

2 0 C =2 N=6, K=2,sirul este
6 2 [2,4,6,8,10,12).
24681012 Se pot forma perechile (2, 4), (6, 8), (10,

12), cu sumele 6, 14, 22, fiecare divizibila
cu 2. O alta modalitate de a forma perechi
este: (2, 8), (4, 10), (6, 12), cu sumele 10,
14, 18, fiecare divizibila cu 2. Astfel,
raspunsul este 0.

5.8 Rezolvarea problemei Perechi

Cerinta 1

Pentru cerinta 1 este suficient sa gasim cel mai din dreapta element care respecta conditia. Par-
curgem sirul si identificam cel mai mic numar Y pentru care suma X + Y este divizibila cu K,
alegdnd pozitia celui mai din dreapta Y. Complexitate: O(N).

Cerinta 2

Pentru cerinta 2, o abordare naiva verifica toate perechile posibile in doua bucle si marcheaza
valorile din perechile valide pentru a nu le reutiliza. Complexitatea de timp este: O(N?).

Solutia optima imparte numerele In functie de resturile lor la K cu ajutorul unui vector de
frecventa si le grupeaza in perechi de forma (R, K — R), unde 1 < R < K/2. Se analizeaza
separat cazurile pentru restul 0 si pentru K par. Pentru fiecare pereche de forma de mai sus,
adunam la rezultat diferenta dintre valoarea frecventei mai mari si valoarea frecventei mai mici.
Complexitate: O(N + K).

5.9 Cod-sursa pentru problema Perechi

using namespace std;
ifstream fin("perechi.in");
ofstream fout("perechi.out");

o8

int n, x, a, b, ¢, vy, k, i, poz, fr[100001];
int main()

{

fin >> ¢ >> n >> k;
a = 1000000001,
if (c=1)
{
fin >> x;
if (x % k ==0)
{
a =
poz

’

1 x

1;
3
for (l = 2, i <= n; i++)
{
fin >> y;
if (((x%K)+Q%k) %k=01]]y%k==20)
{
if (y <= a)

}
fout << poz;

}
else
{
for (i = 1; i <= n; i++)
{
fin >> x;
frix % kl++;
}
int nr = 0;
if (frf0] % 2 == 1) nr++;
if (k% 2==1)
x =k + 1;
else
X k;
for (i = 1; i < x/2; i++)

{

if (i %k !'=0)
{
a = max (frfil, frlk-il);
b = min (fr[il, frlk-il);
nr =nr +a-b;
}
}
if (k % 2 ==20) nr= nr + (fr[k/2] % 2);
fout << nr;
3

return 0;

29

60

Capitolul 6

ONI 2025, clasa a VI-a

6.1 Problema Diff

Propusa de: prof. Dan Pracsiu, Liceul Teoretic ,,Emil Racovita”, Vaslui

Se considera sirul de N cifre nenule a = (a4, ag, ..., ay). Prin frecventa de aparitie a unei cifre in
sir intelegem numarul de aparitii ale cifrei In acest sir.

Pentru o secventa a;, @41, ..., a; din acest sir (1 < i < j < N) calculam frecventa fiecarei cifre
distincte prezente in secventa si definim diff-ul secventei ca fiind diferenta dintre cea mai mare
frecventa si cea mai mica frecventa dintre cele calculate.

Exemplul 1: in secventa 2,7, 3, 2,2, 3,8, 8, 2 diff-ul secventei este 4 —1 = 3 (cifra 2 apare de patru
ori, iar cifra 7 o singura data).

Exemplul 2: pentru secventa 9,9,9,9 diff-ul secventei este 0.

Cerinte

1. Determinati frecventa maxima de aparitie a unei cifre din sirul a.

2. Determinati diff-ul maxim posibil al unei secvente care incepe de la prima pozitie din sirul
a.

3. Determinati diff-ul maxim al unei secvente din sirul a.

Date de intrare

Fisierul de intrare diff.in contine pe prima linie numerele naturale C'si N, unde C este cerinta
care trebuie rezolvata (1, 2 sau 3) si N are semnificatia din enunt, iar pe urmatoarea linie NV cifre
nenule, separate prin cate un spatiu, reprezentand termenii sirului a.

Date de iesire

Fisierul de iesire diff.out contine numarul determinat pentru cerinta C'.

Restrictii

« Ce{1,2,3}
« 3< N <100000
« Se garanteaza ca, pentru toate testele, in sir exista cel putin doua cifre distincte.

61

Puncte Restrictii

#
1 30 C=1
2
3

30 C=2
40 C=3
Exemple
diff.in diff.out Explicatii
19 4 C =1, N =9. Se rezolva cerinta 1.
177977191 Sirul @ = (1,7,7,9,7,7,1,9,1) contine cifra
1 de 3 ori, cifra 7 de 4 ori, cifra 9 de 2 ori.
Frecventa maxima de aparitie este 4,
corespunzatoare cifrei 7.
29 3 C =2, N=9. Se rezolva cerinta 2.
177977191 diff-ul maxim al unei secvente care incepe
de la pozitia 1 este 3 si apartine secventei:
177977
310 4 C =3, N =10. Se rezolva cerinta 3.
9779779779 diff-ul maxim este 4, corespunzator
secventei:
TT9TTITT

6.2 Rezolvarea problemei Diff

Cerinta 1 - 30p

Se utilizeaza un vector de frecvente, notat cu fr, de lungime 10, in care fr[i| retine numarul de
aparitii ale cifrei ¢ In sirul a, ¢ = 1..9. Parcurgem sirul a si fiecare cifra a[i] o contorizam in fr,
iar la final aflam valoarea maxima din fr.

Cerinta 2 - 30p

Ca si la prima cerinta, utilizam vectorul fr. Parcurgem sirul a si la fiecare pas ¢ = 1..n, il punem
pe ali] in vectorul de frecvente. In acest moment in fr avem memorat numarul de aparitii ale
fiecarei cifre de la 1 la 9 din secventa a[l], a[2], .., a[i]. Actualizam diferenta maxima dintre doua
valori nenule din fr.

Cerinta 3 - 40p. Solutia 1
Avem doua etape:

1. Sa consideram pentru inceput doua cifre distincte cl si ¢2. Dorim sa determinam diff-ul
maxim (diferenta maxima dintre numarul de aparitii ale lui ¢1, minus numarul de aparitii
ale lui ¢2) care se obtine dintr-o secventa din sir.

Construim un vector d de lungime n.

Parcurgem sirul a si la fiecare pas ¢ avem cazurile:
o afi] = cl, atunci dfi] =d[i — 1] + 1
e afi] =2, atunci dfi] = d[i — 1] — 1
o ali] # cl si ali] # 2, atunci d[i] = d[i — 1]

62

Deci valorile din d cresc atunci cand dam peste cifra cl, scad cdnd dam peste ¢2 sau raméan
nemodificate In cazul celorlalte litere. La fiecare pas ¢, vom retine in variabila mn cea mai
mica valoare a lui d care s-a obtinut pana atunci cand s-a gasit o cifra c2. Diferenta maxima
diff se actualizeaza cu valoarea d[i] — mn de fiecare data cand Intalnim o cifra cl.
Atentie, valorile din d pot fi si negative sau zero, dar trebuie sa ne asiguram ca valoarea
mn s-a obtinut atunci cand am intalnit cel putin un c2.

2. Facem acelasi algoritm pentru cele doua cifre cl si ¢2, parcurgand sirul de la dreapta la
stanga.

Etapele 1 si 2 le efectuam pentru orice cifre diferite, 1 < cl # ¢2 < 9. Numarul de pasi la cerinta
3vafideci 9x8xn ="T2%*n.

Cerinta 3 - 40p. Solutia 2
Rezolvarea cerintei este bazata pe algoritmul de subsecventa de suma maxima (Kadane).

Pentru fiecare pereche de cifre cl si ¢2, 1 <cl,¢2 <9, cl # ¢2 parcurgem sirul a si pentru fiecare
element a; al sirului vom defini variabila x astfel: 1 daca a; = cl1, —1 daca a; = c2 sau 0 In caz
contrar.

Vom adauga valoarea x la suma subsecventei curente, suma ce reprezinta de fapt diff-ul maxim
al subsecventei pentru care cifra cl are numarul de aparitii maxim, iar cifra ¢2 are numarul de
aparitii minim.

Evident, vom retine valoarea maxima a sumei secventei doar daca cifra c2 apare.
6.3 Cod-sursa pentru problema Diff

using namespace std;

ifstream fin();
ofstream fout();
int fr[10], n, a[100006];
int d[100006];

int main()
{
int task, i, j, cl1, c2, difmax, minAp, maxAp;
int ult, mn;
fin >> task >> n;
for (i = 1; i <= n; i++)
fin >> alil;
if (task == 1)

{
int mx = 0;
for (i = 1; i <= n; i++)
{
j = alil;
frijl++;
mx = max(mx, fr[jl);
}
fout << mx << 0
3
else if (task == 2)
{

difmax = 0;

63

for (i = 1; i <= n; i++)

{
frialill++;
minAp = 100001; maxAp = 0;
for (j =1; j < 10; j++)
if (frLjl > 0)
{
minAp = min(minAp, fr[(jl);
maxAp = max(maxAp, fr(jl);
}
difmax = max(difmax, maxAp - minAp);
}
fout << difmax << 2
3
else
{

difmax = 0;
for (c1 = 1; c1 < 9; cl++)
for (c2 =cl + 1; c2 < 10; c2++)

{
ult = mn = 0;
for (i = 1; i <= n; i++)
{
if (alil == c1)
{
dfi]l = d[i - 11 + 1;
if (ult > 0) difmax = max(difmax, d[i] - mn);
3
else if (alil] == c2)
{
dfi] = d[i - 1] - 1;
for (j = ult; j < i; j++)
if (mn > d[j1) mn = d[j];
ult = i;
3
else d[i] = d[i - 11;
}
ult =n+ 1; mn = 0;
for (i =n; i>1; i--)
{
if (alil == c1)
{
dfi] = d[i + 1] + 1;
if (ult <= n) difmax = max(difmax, d[i] - mn);
3
else if (a[il == c2)
{
d[i]l = d[i + 1] - 1;
for (j = ult; j > 1i; j--)
if (mn > d[j1) mn = d[j];
ult = i;
3
else d[i] = d[i + 11;
}

swap(cl, c2);
ult = mn = 0;
for (i = 1; i <= n; it++)
{
if (alil] == c1)

dfi] = d[i - 1] + 1;
if (ult > 0) difmax = max(difmax, d[i] - mn);

}
else if (ali] == c2)
{
dfi] = d[i - 1] - 1;
for (j = ult; j < i; j++)
if (mn > d[j1) mn = d[j];
ult = i;
3

else d[i] = d[i - 11;
}
ult =n+ 1; mn = 0;
for (i =n; 1> 1; i--)

{
if (alil == c1)
{
dfi] = d[i + 1] + 1;
if (ult <= n) difmax = max(difmax, d[i] - mn);
3
else if (ali] == c2)
{
dfi] = d[i + 1] - 1;
for (j = ult; j > 1i; j--)
if (mn > d[j1) mn = d[j];
ult = i;
3
else d[i] = d[i + 1];
}
swap(cl, c2);
}
fout << difmax << g
3
return 0;

const int NMAX=1le5+5;
const int CMAX=15;

using namespace std;
ifstream cin();

ofstream cout(R

int a[NMAX], f[CMAXJ;
int n;

int main()

{

int ¢, i, j, ans=0, cnt=0;

cin>>c>>n;

for(i=1; i<=n; i++)

{
cin>>alil;
if(tfLalill) cnt++;
flalill++;
ans=max(ans, flal[ill);

3

if(cl=1)

{

65

66

ans=0;
for(i=1; i<=9; i++)

{
for(j=1; j<=9; j++)
{
if(i==j) continue;
int k, minim=1e9, minrev=0, sum=0;
for(k=1; k<=n; k++)
{
if(alk]==i) sum++;
else if(alkl==j)
{
sum--;
minim=min(minim, minrev);
3
if(c==3) ans=max(ans, sum-minim);
else if(minim!=1e9) ans=max(ans, sum);
minrev=min(minrev, sum);
}
3
}
}
cout<<ans<< ;
return 0;

6.4 Problema Prime

Propusa de: prof. lonel-Vasile Pit-Rada, Colegiul National ,Traian™ Drobeta-Turnu Severin

Pentru un numar natural N consideram sirul: 0, 1, 2, ..., N.

Cerinte

1. Se dau @ perechi de numere naturale de forma (a,b). Pentru fiecare pereche se cere sa se
determine numarul de numere prime care afla in secventa de numere consecutive: a, a + 1,
a+2,...,0.

2. Se dau @) numere naturale py, po, ...

, pg- Pentru fiecare numar p; se cere sa se determine

numarul secventelor a, a +1, a+2, ..., bdin sirul 0, 1, ..., N care contin cate p; numere
prime (1 <i < Q).

Date de intrare

Fisierul de intrare prime.in contine pe prima linie trei numere naturale C' N (@), separate prin
cate un spatiu, unde C este cerinta care trebuie rezolvata (1 sau 2), N si) au semnificatia de

mai sus.

Daca C' = 1, atunci pe fiecare dintre urmatoarele) linii se afla cate doua numere naturale a b,
separate prin spatiu, reprezentand extremitatile unei secvente de numere naturale consecutive.

Daca C' = 2, atunci pe urmatoarele @) linii se afla cate un numar natural p; (1 < i < @), cu
semnificatia din enunt.

Date de iesire

Fisierul de iesire prime.out contine () numere, fiecare pe cate un rand, in conformitate cu cerinta

C.
Restrictii

« Ce{l,2}

« 1< N,Q <50000

oOSCLSbSN

« 0<p <N, 1<i<Q

Puncte Restrictii

1 40 C=1,1<N,Q < 10000
2 10 C =1, 10000 < N,Q < 50000
3 30 C=21<N,Q < 10000
4 20 C =2,10000 < N, Q < 50000

67

Exemple

prime.in prime.out Explicatii
110 3 4 C=1, N=10,Q = 3.
010 1 Se rezolva cerinta 1.
33 0 In secventa 0...10 existd 4 numere prime:
8 10 ’
2,3,5, 7.
In secventa 3...3 existd un singur numar
prim, numarul 3.
In secventa 8 ... 10 nu exista numere prime.
210 2 12 C=2, N=10,Q =2.
4 17 Se rezolva cerinta 2.

Exista cate 4 numere prime in fiecare
dintre urmatoarele 12 secvente: 0. .. 10,
1...10,2...10,0...9,1...9,2...9,
0...8,1...8,2...8,0...7,1...7,2...7.
Exista cate un singur numar prim in
fiecare dintre urmatoarele 17 secvente:
0...2,1...2,2...2,3...3,3...4,4...5,
5...5,4...6,5...6,6...7,6...8,6...9,
6...10,7...7,7...8,7...9,7...10.

6.5 Rezolvarea problemei Prime

Solutia 1
Cerinta 1. Varianta 1-1 - O(Q * N * sqrt(N))

Parcurgem cele () interogari si pentru fiecare pereche a, b vom numara numerele prime din secventa
a,a+1,...,b. Punctajul obtinut va depinde de modul cum verificam primalitatea unui numar.

Cerinta 1. Varianta 1-2 - O(N * sqrt(N) +Q = N)

Verificam primalitatea fiecarui numar din secventa 0...N si pastram informatiile Intr-un vector
v[i] = 1, daca i este prim, respectiv v[i] = 0 daca i nu este prim. Parcurgem cele () interogari si
pentru fiecare pereche a,b vom numara numerele prime din secventa a,a + 1, ..., b.

Cerinta 1. Varianta 1-3 - O(N *log(N) +Q * N)

Utilizam ciurul lui Eratostene si construim vectorul ciur[i] = 0, daca i este prim, respectiv
ciur[i] = 1, in caz contrar. Parcurgem cele () interogari si pentru fiecare pereche a, b vom numara
numerele prime din secventa a,a + 1, ..., b insumand valorile.

(1 — ciurfa]) + (1 — ciurja + 1]) + ... + (1 — ciur[b])

Cerinta 1. Varianta 1-4 - O(N xlog(N) + Q)

Utilizam ciurul lui Eratostene calculam vectorul de sume partiale s[0...N]. Parcurgem cele @)
interogari si pentru fiecare pereche a,b vom numara numerele prime din secventa a,a + 1,...,0
astfel: daca a = 0, atunci numarul de numere prime este s[b], in caz contrar (a > 0) numarul de
numere prime este s[b] — sla — 1].

68

Cerinta 2. Varianta 2-1 - O(Q x N * N x sqrt(N))

Parcurgem cele) interogari si in cadrul fiecarei interogari parcurgem toate secventele [a..b] cu
0 <=a <= b <= N si numaram numerele prime in cadrul fiecarei secvente.

Punctajul obtinut va depinde de modul cum verificam primalitatea unui numar si de modul cum
efectuam numararea.

Cerinta 2. Varianta 2-2 - O(N *log(N)+Q * N x N)

Tmbunétz‘ipim varianta 2 — 1 utilizand ciurul lui Eratostene.

Cerinta 2. Varianta 2-3 - O(N xlog(N) + N * N + Q)

Imbunatatim varianta 2 — 2 astfel incat sa facem doar o singura data parcurgerea secventelor.
Pentru aceasta folosim un vector de frecventa ce calculeaza numarul de secvente cu p numere
prime.

Parcurgem cele () interogari si pentru fiecare interogari afisam corespunzator frecventa ceruta.

Cerinta 2. Varianta 2-4

Utilizand ciurul lui Eratostene calculam vectorul prime|] cu cele nr numere prime cuprinse in
[0..N], addugam vectorului elementele primel0] = —1 si prime[nr + 1] = N + 1.

Se observa ca pentru interogarile In care se cere numarul secventelor care nu contin numere prime
solutia se obtine dacd numaram pentru fiecare interval de valori primel[i] + 1,...,prime[i + 1] — 1
cate secvente [a..b] avem cu primeli] +1 <=a <=b <= prime[i + 1] — 1, 0 <=1 <= nr.

Notam cu z = prime[i + 1] — prime[i] — 1
Formula este 1 +2+ ... + 2 =z % (x 4+ 1)/2 (obtinuta cu formula lui Gauss)

Pentru interogarile In care se cere numarul secventelor care contin p numere prime, cu p >= 1,
solutia este sa calculam numarul de secvente [a..b] cu prime[i — 1] + 1 <= a <= prime]i] si
primeli +p— 1] <=b<=primeli+p| —1,cu 0 <=i<=nr+1—p.

Vom nota cu x = primel[i] — primeli — 1] si cu y = primeli + p| — primeli + p — 1]
Formula acum se reduce la = x y

Trebuie Insumate aceste produse pentru a obtine rezultatul, care se memoreaza pentru a nu mai
fi recalculat

O(N xlog(N)+ pi(N) *min(Q,pi(N))), unde pi(N) reprezinta numarul numerelor prime <= N.

Solutia 2

Construim cu ciurul lui Eratostene un vector caracteristic a, de lungime 50000, in care afi] = 1,
daca i este numar prim sau ali] = 0, daca i nu este numar prim. Pe baza acestui vector construim
apoi sumele partiale sp, deci sp[i]| = a[0] + a[l] + - - - + ali].

Cerinta 1 Complexitate O(N*log(log(IN))+Q)

Pentru fiecare intrebare data prin perechea (i, 7), numarul de numere prime din intervalul [z, j]
este dat de sp[j] — sp[i — 1]. Atentie, daca i = 0, atunci raspunsul este sp[j] — sp|[0].

69

Cerinta 2 Complexitate O(N x log(log(N)) + N x pi(N)) + @), unde pi(N)
reprezinta numarul numerelor prime <= N
Pentru a intelege mai bine algoritmul la aceasta cerinta, sa vedem cum arata vectorii a si sp

pentru numerele de la 0 la 16:
i =0123456789 10 111213141516

a =0011010100 O 1 0 1 O 0 O
sp=0012233444 4 5 5 6 6 6 6

Retineti ca cei doi vectori au de fapt lungimea 50000. Construim (precalculam) inca doi vectori,
frsient, in care fr(i] = cate valori din sp sunt egale cu ¢ cnt[i] = cite secvente au exact ¢ numere

prime

Vectorul fr se construieste usor, parcurgand sp. Cum construim insa pe cnt? Presupunem ca
suntem la un pas ¢ = 1..n si consideram = = sp|i].

Cate secvente care se termina cu pozitia ¢ contin zero numere prime? Raspunsul este dat de
numarul de valori egale cu = obtinute anterior. Sa ne uitam la vectorul a obtinut mai sus. La
pozitia 10 avem x = sp[10] = 4. Anterior mai avem inca trei de 4, deci sunt trei intervale care
se termina cu 10 si au zero numere prime: [8,10], [9,10] si [10,10]. Deci in ent[0] vom adauga
numarul de valori de z retinute anterior in vectorul fr.

Asemanator, pentru x = spli], cte secvente care se termina cu pozitia ¢ si au de exemplu doua
numere prime? Raspunsul este frix — 2|, care se adauga la cnt[2].

Ideea este deci ca la fiecare pas, pentru x = spli], pentru orice j = 0..z putem contoriza cite
intervale care se termina cu ¢ au exact j numere prime, contorizand in cnt[j] valoarea fr{z — jl.
Nu uitam ca la final sa-l1 adaugam in fr pe x.

6.6 Cod-sursa pentru problema Prime

using namespace std;
ifstream fin();
ofstream fout(R
int N,Q,C,a,b,p,nv,v[50002],sp[50002]7;
long long T[50002];
char ciur[50002];
int main(){
fin>>C>>N>>Q;

ciur[0]=1; ciur[1]=1;
for(int i=2;i<=N;i++){
if(ciur[i]==0){
int x=N/1i;
for(int j=i;j<=x;j++){
ciur[j*il=1;

3
}
3
if(C==1){
sp[0]=0;

for(int i=1;i<=N;i++){
splil=spl[i-1]+(1-ciur[il);
3

70

3
if(C==2){

nv=0,;
for(int i=2;i<=N;i++){
if(ciurli]==0){

v[++nv]=i;
3
3
3
for(int g=1;9<=Q;q++){
if(C==1){
fin>>a>>b;
if(a==0){
fout<<sp[b]<<"\n";
}
else{
fout<<sp[bl-sp[a-1]1<<"\n";
3
3
if(C==2){
fin>>p;
if(TLpl==0){
long long k2=0;
if (p==0){
v[0]=-1; vInv+1]=N+1;
for(int i=1;i<=nv+1;i++){
long long a=v[i]-v[i-1]-1;
k2=k2+(a+1)*a/2;
3
3
else{
v[01=-1; vInv+1]=N+1;
for(int i=1;i+p-1<=nv;i++){
long long a=v[i]-v[i-1];
long long b=v[i+p]l-v[i+p-1]
k2=k2+a*b;
}
}
Tlpl=k2;
}
fout<<T[pl<<"\n";
}
3
return 0;

’

71

6.7 Problema Special

Propusa de: prof. Ana-Maria Arisanu, Colegiul National ,Mircea cel Batran”, Ramnicu-Valcea

Mihai si Ioana au creat o reprezentare a matricii A cu N linii (numerotate de la 0 la N — 1) si
M coloane (numerotate de la 0 la M — 1) in care fiecare element A[i][j] este determinat pe baza
urmatoarei formule: A[i][j] = (15 %7 + 4 % j 4+ 2025)%K, unde i si j sunt indicii liniei si coloanei,
iar K este un numar natural nenul, ales de ei.

Se definesc urmatoarele categorii de numere:

e numar special: un numar natural de doua cifre, al carui patrat este un numar de trei cifre,
iar cifra zecilor din acest patrat este egala cu suma dintre cifra sutelor si cifra unitatilor.
Exemplu: 11 este un numar special.

e numar aproape special: un numar care poate deveni special prin eliminarea a cel putin
unei cifre. Exemplu: 12310 este numar aproape special pentru ca prin eliminarea cifrelor
0, 2 si 3 se obtine numarul special 11.

Mihai si Ioana incep, in acelasi timp si cu aceeasi viteza, explorarea matricii incepand cu A[0][0],
folosind strategii diferite:

« loana se deplaseaza pe linii, de sus in jos, si pe fiecare linie de la stdnga la dreapta.
« Mihai se deplaseaza pe coloane, de la stanga la dreapta, si pe fiecare coloana de sus in jos.

In anumite momente de timp, cei doi ajung simultan la acelasi element.

Cerinte

1. Determinati numarul de numere speciale care exista In matricea A.
2. Determinati numarul elementelor din matricea A care sunt numere aproape speciale, la care
Mihai si Ioana ajung in acelasi timp.

Date de intrare

Fisierul de intrare special.in contine pe prima linie numarul natural C', unde C este cerinta
care trebuie rezolvata (1 sau 2). Pe a doua linie se afla trei numere N M K, separate prin céte
un spatiu, cu semnificatia din enunt.

Date de iesire

Fisierul de iesire special.out contine numarul determinat pentru cerinta C'.

Restrictii

« Ce{l,2}
« 1 <N, M < 1000000
e 10 < K <1000000

Puncte Restrictii

#
1 3 C=1,1<N,M <1000
2
3
4

15 C=1,1000< N, M < 1000000
30 C=21<N,M <1000
20 C=2,1000< N,M < 1000000

72

Exemple

special.in special.out Explicatii
1 2 C = 1. Se rezolva cerinta 1.
4513 Matricea este
101590
123 711 2
159014
3711 26
Numarul 11 este special si apare de 2 ori.
2 1 C = 2. Se rezolva cerinta 2.
75 1000 Matricea este
25 29 33 37 41
40 44 48 52 56
55 H9 63 67 T1
70 74 78 82 86
8 89 93 97 101
100 104 108 112 116
115 119 123 127 131
Cei doi copii se Intalnesc la plecare in
A[0][0], apoi in A[3][2] si la sosire in A[6][4].
In A[6][4] se afla numarul 131 care este
aproape special.
Ioana Mihai
@ 1 2 3 4] [7 14 21 28]
5 6 7 8 9 1 8 15 22 29
10 11 12 13 14 2 9 16 23 30
15 16 @) 18 19| |3 10 @ 24 31
20 21 22 23 24| |4 11 18 25 32
25 26 27 28 29 5 12 19 26 33
130 31 32 33 @4) (6 13 20 27@
2 5 C = 2. Se rezolva cerinta 2.
11 21 3000 Sunt 11 elemente ale matricii in care cei
doi copii se Intalnesc, dintre care doar 5 au
ca valori numere aproape speciale.

6.8 Rezolvarea problemei Special

Consideratii matematice

Numirul natural ab este special <=
Dtz = ab=110-2+11 -2 =

ab=11 — ab =121

ab =922 — ab =485

ab =33 —> ab = 1089 care nu convine pentru ca nu are 3 cifre.

Deci, doar 11 si 22 pot fi considerate numere speciale.

b’ =TYE = y=a+2 = ab =100-z+10- (z +
ab’ =11-7% = ab € {11,22,33}

73

Un numar devine numar special prin eliminarea cel putin a unei cifre daca numarul are cel putin
3 cifre si contine cel putin doua cifre de 1 sau cel putin doua cifre de 2.

Observatie Din cauza restrictiilor impuse solutia optima nu poate fi obtinuta prin construirea
efectiva a matricii.

Cerinta 1. Solutie de 35p - O(N x M)

Se genereaza toate elementele matricii si se verifica, pentru fiecare numar format din doua cifre,
daca acesta Indeplineste conditia de ,numar special”.

Cerinta 1. Solutie de 43p - O(N x M)

Se calculeaza frecventa de aparitie a numerelor 11 si 22, conform formulei date.

Cerinta 1. Solutie de 50p - complexitate O(N + M)
Propusa de: prof. Ionel-Vasile Pit Rada, Colegiul National ,Traian”, Drobeta-Turnu Severin

Se observa ca, pe fiecare linie a matricii variatia rezultatului formulei de calcul este data de
termenul 4 * j (deoarece 15 * i + 2025 raméne constant pe linie).

Aplicand proprietatea modulo (a + b)%k = (a%k + b%k)%k se precalculeaza resturile termenilor
(4 % j)%k, pentru j variind de la 0 la M — 1.

Pentru fiecare linie ¢, valoarea = (15 % i + 2025)%k este constanta si ca urmare numerele 11,
respectiv 22 nu pot aparea decat in coloanele j pentru care (4% j)%k = 11 —x, (4%)%k = 22—«
sau (4)%k = (k —x + 11), (4% j)%k = (k — z + 22).

Cerinta 2. Solutie de 30p - O(N x M)

Se simuleaza deplasarile construind matricile timpilor de acces la celule si se determina pe baza
acestora punctele de Intalnire. Se contorizeaza doar punctele de intalnire care au numere de cel
putin 3 cifre si care contin fie cel putin doua cifre de 1, fie cel putin doua cifre de 2 (sau ambele).

Cerinta 2. Solutie de 50p - O(max(ged(N, M), log(min(N, M))))
Propusa de: prof. Alice Georgescu Alice, Colegiul National , Mihai Viteazul”, Ploiesti

Un punct de intélnire (lin, col) are urmatoarea proprietate intr-o matrice de dimensiune N x M
(indexata de la 0) lin- M + col = col - N +lin => lin- (M —1) =col - (N —1) = lin/col =
(N=1)/(M—=1),cu0<lin<N—-1,810<col <M —1 (relatia 1)

Aceasta inseamna ca toate punctele de Intalnire mentin un raport constant intre indicele liniei si
indicele coloanei, egal cu (N —1)/(M —1).

Prin urmare, numarul punctelor de intilnire este legat de GCD(N — 1, M — 1) si coordonatele
acestor puncte se pot calcula direct din relatia 1.

6.9 Cod-sursa pentru problema Special

using namespace std;
ifstream fin()
ofstream fout();

74

int ¢,n,m,k,x,nras,y,ri,rj[1000002],nrs11,nrs22;
int main()
{
fin>>c>>n>>m>>k;
if(c==1)
{
rjfel=1;
for(int j=1; j<=m-1; j++)
{
y=(4%3)%k;
rjlyl++;
}
for(int i=0; i<=n-1; i++)
{
ri=(15%i+2025)%k;
if(ri<=11)nrs11+=rj[11-ril;
else nrs1l+=rj[k-(ri-11)1;
if(ri<=22)nrs22+=rj[22-ril];
else nrs22+=rj[k-(ri-22)17;
}
fout<<nrs11+nrs22;
}
if(c==2)
{
int G=__gcd(n-1,m-1);
int paslin=(n-1)/G;
int pascol=(m-1)/G;
for (int kk=0; kk<=G; kk++)
{
int lin=kk*paslin;
int col=kk*pascol;
x=(15%1in+4*xcol+2025)%k;
if (x>100)
{
int nr1=0,nr2=0;
while (x)
{
if (x%10==1) nri++;
if (x%10==2) nr2++;
x/=10;
}
if (nr1>=2 || nr2>=2) nras++;
}
}
fout<<nras<<'\n';

b

return 0;

76

Capitolul 7

ONI 2025, clasa a VII-a

7.1 Problema Alvn

Propusa de: stud. Marcu Mihai, Delft University of Technology

Veveritele ALVN si prietenii sai Simon si Theodore au fost afectati de noua criza de ghinde, asa
ca au plecat de acasa In cautarea hranei. Din fericire, dupa o perioada de cautari, au descoperit o
gradina cu N randuri de stejari cu cate M stejari pe fiecare rand. Fiecare stejar are alocata cate o
parcela de forma patrata si de dimensiuni identice. Fiecare stejar este batran si are ramuri mari,
astfel incat produce ghinde care pot cadea nu doar in parcela in care se afla, ci si In parcelele
adiacente. Fiecare stejar are un coeficient de productie al ghindelor C' si va produce ghinde
conform urmatoarei distributii:

o Produce un numar z; - C' de ghinde in parcela proprie (centru).
e Un numar x5-C' de ghinde ajung in parcelele din inelul imediat
exterior (parcelele adiacente direct), ca in desenul alaturat. 5
e Un numar z3 - C' de ghinde ajung in celulele din al doilea inel -
si asa mai departe, pentru fiecare inel exterior.
Acest model continua pana la cel mai indepartat inel. Fiecare ste-
jar are cel mult k inele, incluzand parcela in care se afla, iar sirul
x1, T, ...T) este ordonat descrescator astfel incat stejarul produce
cele mai multe ghinde in parcela in care se afla, iar numarul scade
treptat in parcelele din inelele mai indepartate.

Inelele sunt patratice si concentrice, putand fi incomplete, in functie de pozitia stejarului in
gradina.

Daca in gradina este doar grupul format din ALVN si prietenii sai, aleg pentru grup parcela cu
numarul maxim de ghinde.

Daca in gradina sunt doua grupuri de veverite, acestea decid, pentru a nu exista suparari, ca
ambele grupuri sa aleaga propriile parcele, respectand urmatoarele reguli:

1. Pot manca doar din copaci ale caror inele nu au nicio parcela in comun.
2. Vor incerca sa maximizeze numarul total de ghinde pe care le consuma.

De exemplu, in imaginea alaturata, daca sunt doua grupuri de ve- L2 456
verite, ele se pot aseza pe parcelele (1,1) si (4,2), Intrucat inelele \
copacilor (reprezentate cu verde) doar se ating, nu au parcele co- ; B
5
7

mune. In schimb, veveritele nu se pot aseza in parcelele (4,6) si
(6,6), deoarece inelele au in comun parcelele din pozitiile (5,5) si
(5,6) (in imagine sunt reprezentate cu rosu, inclusiv cele comune).

77

Se cunosc N, M, coeficientii fiecarui stejar din gradina, k, si valorile x4, x9, . . . 7, cu semnificatia
din enunt.

Cerinte

1. Determinati S, numarul maxim de ghinde pe care le poate consuma grupul lui ALVN, cand
ei sunt singuri in gradina.

2. Determinati T', numarul total de ghinde consumate de doua grupuri de veverite aflate in
gradina.

Date de intrare

Pe prima linie a fisierului alvn.in se afla un numar natural p, care reprezinta cerinta (1 sau 2).
Pe a doua linie se afla doua numere naturale N si M, cu semnificatia din enunt. Urmatoarele N
linii contin cate M valori, reprezentand coeficientii de ghinde produse de fiecare stejar, in ordine,
rand dupa rand si pentru fiecare rand, In ordinea parcelelor pe care se afla. Pe linia N + 3 se afla
valoarea £, cu semnificatia din enunt. Pe linia urmatoare, se afla k valori, reprezentand coeficientii
x1,T2,...,Tk, cu semnificatia din enunt.

Date de iesire
Fisierul de iesire alvn.out va contine un singur numar natural, astfel:

e Daca p =1, atunci se va afisa numarul S, determinat la cerinta 1.
» Daca p = 2, se va afisa numarul 7', determinat la cerinta 2.

Restrictii

e« 1 <N, M <700

o 1 < K <min(N, M, 200)

o 0 <z, <100, pentru orice k € {1,2,..., K}

e 0 < coeficientul fiecarui stejar < 100

» Valorile z1, 29, ..., 2 respecta relatia 1 > 29 > 23 > -+ > 7,

Puncte Restrictii
10 p=1si N,M <100, K <10

35 p = 1 si nu exista restrictii suplimentare

20 p=2si K<10

= w | N

35 p = 2 si nu exista restrictii suplimentare

78

Exemple

alvn.in alvn.out Explicatii
1 25 Numarul de ghinde din fiecare celula este:
4 4 1313159
e 13 23 18 16
S 15 18 25 14
0101 916 14 14
3 In parcela (3,3) sunt ghinde din urmatorii
421 stejari, din parcelele: (3,3): 3-4 =12,

(2,2):2-2=4, (2,4):2-1=2, (4,2):
2:-1=2, (4,4):2-1=2, (1,1): 1-1=1,
(1,3): 1-1=1, (3,1): 1-1=1. Deci, in
total sunt 25 de ghinde.

11 Veveritele se vor aseza in parcelele (1,3) si
(4,2). Inelele acestor copaci nu se vor
intersecta.

Parcelele din inelele stejarului din (1, 3)
sunt verzi, iar cele ale stejarului din (4, 2)
sunt mov. Parcela (1,3) va avea valoarea

1 5, iar parcela (4,2) va avea valoarea 6.
1 2 3 4

NN), —= B~ DN
— O NSO b
o w e =
- = o

1

2

O

7.2 Rezolvarea problemei Alvn

Propusa de: prof. Adrian Panaete, Colegiul National , August Treboniu Laurian”, Botosani

Cerinta 1.

In rezolvare vom utiliza doua matrice: SL, in care calculam sumele partiale pe linii, si SC, in
care calculam sumele partiale pe coloane.

Astfel, SL[i][j] va retine suma elementelor de pe linia 7, elemente care se gasesc pe coloanele de
la 1 la 7, iar SC[i][j] retine suma elementelor de pe coloana j, elemente care se gasesc de la linia
1 la linia 4.

Putem observa ca, pentru fiecare parcela, se vor calcula, pentru fiecare pozitie la distanta w de
parcela curentd, xw]-val. Astfel, pentru toate valorile la distanta w de o anumita parcela (de pe
inelul w, pornind de la parcela noastra), acestea se vor inmulti cu x[w]. Vom incerca sa calculam
mai rapid suma acestor parcele folosind matricele de sume partiale definite anterior. Astfel:

o Suma de sus este SL[i —w + 1][j +w — 1] = SL[i —w + 1][j — w];

o Suma din dreapta este SC[i + w — 1)[j + w — 1] = SC[i —w + 1][j + w — 1];

o Suma de jos este SL[i +w — 1][j + w — 2] — SL[i + w — 1][j — w];

« Suma din stanga este SC[i +w —2][j —w + 1] = SCli —w + 1][j —w + 1].
Observatie: Aceste sume ar putea fi calculate cu modificarea indicilor, daca acestia nu se inca-
dreaza in intervalele de la 1 la N in cazul liniilor, respectiv de la 1 la M in cazul coloanelor. In

79

particular, sumele vor fi 0 daca linia sau coloana la care ne referim nu este valida. Sumele se vor
calcula pentru w = 1, K, iar complexitatea timp este O(N - M - K).

Cerinta 2.

O observatie este ca doi copaci nu au nicio parcela in comun daca diferenta dintre liniile lor sau
coloanele lor este mai mare sau egala cu 2 - K — 1.

Pentru solutia eficienta, vom avea nevoie de patru vectori: maxUD, max LR, maxrDU, maxrRL.

» maxUD[i] reprezinta elementul maxim care are linia mai mica sau egala cu i;
o maxLR][i] reprezinta elementul maxim care are coloana mai mica sau egala cu i;
« maxDU]i] reprezinta elementul maxim care are linia mai mare sau egala cu i;
o maxRL[i] reprezinta elementul maxim care are coloana mai mare sau egala cu i.

Astfel, pentru fiecare element (i, j), parcela maxima al carei stejar nu are alte parcele in comun
cu stejarul de pe parcela (7, j) va fi maximul dintre:

o« mazUD[i —2- K + 1]
o« marLR[j —2- K +1]
e mazDU[i +2- K — 1]
o« marRL[j+2- K — 1]

Complexitatea in timp este O(N - M - K), deoarece trebuie sa calculam matricea de la cerinta 1.

7.3 Cod-sursa pentru problema Alvn

using namespace std;
ifstream f(g
ofstream g()8
const int N=702;

int cer,n,m,k,SOL,M[NJ[N],SLELNILN],SCINILNT,sol[NJ[N],x[N];
int maxUD[NJ,maxDU[LN],maxLR[N],maxRL[N];
int sumaLin(int lin,int L,int R)

if(lin<1]|1lin>n)return 0;
L=max(L,1);

R=min(R,m);

return SL[1in][R]-SL[1in][L-11;

int sumaCol(int col,int U,int D)

if(col<l|]|col>m)return 0;

U=max (U, 1);

D=min(D,n);

return SC[D][col]-SC[U-1]1[col];
3
int main()
{

f>>cer>>n>>m;
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)

30

f>>MLi105];
SLLi1Cj1=SLLiI[j-11+M[i1[j];
SCLilCj1=SCLi-11[j1+M[i1[j];
3
>>k;
for(int i=0; i<k; i++)
>>x[i];
for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
sol[i1[j1=x[01*M[i][j];
for(int K=1; K<k; K++)
for(int i=1,U=i-K,D=i+K; i<=n; i++, U++,D++)
for(int j=1,L=j-K,R=j+K; j<=m; j++,L++,6R++)
sol[iJ[j1+=x[KJI*(sumaLin(U,L,R-1)+sumaCol(R,U,D-1)+
sumaLin(D,L+1,R)+sumaCol(L,U+1,D));

for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
{
maxLR[jJ=maxRL[jJ=max(maxLR[j1,sol[i1[j1);
maxUD[iJ]=maxDU[iJ=max(maxUD[i],sol[i1[j1);
SOL=max (SOL,sol[il[j1);
}
if(cer==1)
{
g<<SO0L<< ;
return 0;
3
SOL=0;
for(int i i<=n; i++)maxUD[i]=max(maxUD[i],maxUD[i-11);
for(int j j<=m; j++)maxLR[jI=max(maxLR[j],maxLR[j-11);
for(int i 1; i>=1; i--)maxDU[iJ=max(maxDU[i],maxDU[i+1]);
for(int j 1; 3>=1; j--)maxRL[jJ=max(maxRL[j],maxRL[j+1]);
for(int i=1,U=i-2xk+1,D=i+2%k-1; i<=n; i++,U++,D++)
for(int j=1,L=j-2%k+1,R=j+2xk-1; j<=m; j++,L++ R++)
{

28
25
n-
m-
1

int other=0;
if(U>=1)other=max(other,maxUD[U]);
if(L>=1)other=max(other,maxLR[L]);
if(D<=n)other=max(other,maxDU[D]);
if (R<=m)other=max(other,maxRL[R]);
if(other)
SOL=max (SOL,sol[i][jJ+other);
}
g<<SOL;
return 0;

7.4 Problema Conturi

Propusa de: prof. Veronica-Raluca Costineanu, Colegiul National ,,Stefan cel Mare”, Suceava

Alina, managerul unui lant de magazine, este responsabila de gestiunea tranzactiilor bancare din
cadrul acestora. Ea lucreaza cu conturi bancare si cunoaste sumele de bani (soldul) existente in
fiecare dintre acestea. Dupa ce a ales banca cu care va colabora, stabileste urmatoarele reguli:

tranzactiile trebuie efectuate In ordinea in care apar;

trebuie sa deschida cat mai putine conturi;

fiecarui cont nou deschis i se asociaza un cod unic egal cu numarul conturilor care au fost
deschise de Alina pana atunci;

la o tranzactie de depunere suma trebuie depusa in Intregime intr-un singur cont; contul se
alege astfel Incat aceasta suma sa fie strict mai mare decat ultima suma depusa in acest cont.
Daca exista mai multe astfel de conturi se alege cel pentru care ultima suma depusa este
maxima, iar daca exista mai multe astfel de conturi se alege cel care are codul asociat minim.
Daca n niciunul dintre conturile existente nu poate fi depusa suma conform precizarilor, se
deschide un nou cont si se depune suma in acesta.

la o tranzactie de retragere suma necesara se poate obtine din unul sau mai multe conturi.
Se alege pentru retragere contul care are soldul cel mai mic, iar daca aceasta este mai mare
decat suma necesara se actualizeaza soldul (prin scaderea din acesta a sumei necesare),
iar procesul se incheie. Daca soldul este insuficient, se actualizeaza suma necesara (prin
scaderea din aceasta a soldului), iar contul respectiv se inchide si procesul se reia cu alegerea
unui alt cont adecvat. Daca exista mai multe conturi cu acelasi sold minim se alege pentru
retragere cel In care ultima suma depusa este maxima; daca sunt mai multe astfel de conturi
se alege cel care are codul asociat maxim.

Se cunosc N, numarul tranzactiilor si N numere intregi nenule a;, as, ..., ay, reprezentand,
in aceasta ordine, sumele de tranzactionat (un numar pozitiv indica o suma care urmeaza a fi
depusa, iar un numar negativ reprezinta o suma care urmeaza a fi retrasa).

Cerinte

Dupa procesarea celor N tranzactii, ajutati-o pe Alina sa determine:

1. numarul de conturi ramase active.
2. soldul maxim care se gaseste Intr-un cont dintre cele ramase active.

Date de intrare

Fisierul de intrare conturi.in contine pe prima linie doua numere naturale, C' si N, unde C' este
numarul cerintei care trebuie rezolvata (care poate fi doar 1 sau 2), iar N are semnificatia din
enunt. Pe a doua linie, separate prin cate un spatiu se afla cele NV valori intregi nenule a4, as, ...,
ay cu semnificatia din enunt.

Date de iesire

Fisierul de iesire conturi.out contine numarul determinat pentru cerinta C'.

Restrictii

82

1 <n<10°%
—10'8 < a; < 108, pentru oricare 1 < i < N;

e a; # 0, pentru oricare 1 <17 < N;

» sumele care trebuie retrase nu depasesc totalul soldurilor din conturile active la momentul
retragerii;

o sunt cel mult 10 retrageri.

Puncte Restrictii
1 39 Cc=1

2 61 C=2
Exemple
conturi.in conturi.out Explicatii

15 2 In contul cu codul 1 se depun sumele: 10,

10 15 5 10 20 15, 20, deci acesta are soldul 10 + 15 + 20
= 45, iar In contul cu codul 2 se depun
sumele 5, 10, deci acesta are soldul 5 + 10
= 15. Sunt 2 conturi active.

25 45 Tranzactiile sunt conform descrierii de mai

10 15 5 10 20 sus, iar soldul maxim este 45, in contul 1.

17 1 Pana in momentul tranzactiei de retragere,

10 15 510 20 -15 35 se procedeaza ca la exemplul 1. Suma 15
se retrage din contul al doilea care astfel se
inchide (15-15=0), iar in singurul cont
ramas activ se depune suma 35.

27 80 Se procedeaza ca la exemplul 3 deci in

10 155 10 20 -15 35 contul activ soldul devine 45+35=80.

27 50 Pana in momentul tranzactiei de retragere,

10 15 5 10 20 -45 35 se procedeaza ca la exemplul 1. Pentru a
retrage suma 45 se efectueaza o retragere
din contul 2 (cu soldul 15) care se inchide;
suma de retras actualizata (45-15=30) este
extrasa In continuare din contul 1 (cu
soldul 45), iar dupa depunerea urmatoare
(de 35) soldul final al acestuia va fi 50.

7.5 Rezolvarea problemei Conturi
Pentru a retine organizat informatiile despre conturile existente, putem folosi o structura cont,
cu atributele:

e id: numar natural, unic pentru fiecare cont;
« sold: sir de cifre, reprezentand suma totala depusa in cont;
e ultimAdaugat: numar natural, reprezentand ultima suma depusa in contul respectiv;

Procesand tranzactiile pe rand, in ordinea in care apar, avem doua cazuri: daca valoarea citita val
este pozitiva, vom avea un caz de depunere, iar daca este negativa, vom avea un caz de retragere.

Putem retine conturile ordonate descrescator dupa ultima suma adaugata, iar in caz de egalitate,
crescator dupa id. In acest fel, in cazul unei depuneri, vom cauta binar pozitia corespunzatoare la

83

care trebuie sa facem depunerea (contul cu ultima valoare adaugata maxima, dar strict mai mica
decat wval), iar daca pozitia corespunzatoare este in afara intervalului de indici in care retinem
conturile active, vom crea un cont nou.

Pentru operatia de retragere, vom reordona conturile descrescator dupa sold, iar in caz de ega-
litate, dupa ultima valoarea adaugata si, in final, crescator dupa id. Putem astfel sa realizam
retragerea incepand de la contul cu cel mai mic sold (dreapta), spre contul cu cel mai mare sold
(stanga). La fiecare pas, vom compara soldul contului curent cont[i] cu val, iar daca nu exista
sold suficient, val = val — cont[i] si contul curent dispare. Ne deplasam atat timp cat |val| > 0.
Dupa finalizarea extragerii, vom reordona conturile descrescator dupa ultima valoare adaugata.

In final, vom afisa raspunsul corespunzator cerintei p. Complexitatea timp a solutiei este O(n -
k -logn), unde k reprezinta numarul de stergeri.

7.6 Cod-sursa pentru problema Conturi

using namespace std;

ifstream fin ("conturi.in");
ofstream fout("conturi.out");

struct contBancar
{
int cod;
short sum[nrCif];
long long ultima;
} vINI;
int n, C, k, nrCont;

inline int cmp(short a[], short b[])

{
if(al@] > b[0]) return 1;
if(al0] < b[0]) return -1;
for(int i = a[0]; i >= 1; --i)
if(alil > b[i]) return 1;
else if(alil < b[i]) return -1;
return 0;
}
inline void aduna(short al[l], long long d)
{
int i;
for(i = 1; i <= a[0]; ++i)
d += a[il, al[il =d % 10, d /= 10;
while(d)
a[++al0]] = d % 10, d/= 10;
}
inline void scade(short a[], short b[1)
{
int i, j;
for(i = b[@] + 1; i <= a[0]; ++1i)
b[i] = 0;

for (i = 1; i <= a[0]; i++)
if(alil >= b[il)

84

3

afi] -= b[il;

else
{
J=i+1;
while(al[j] == 0 && j < a[0])
alj++] = 9;
aljl--;

alil = 10 + a[i] - b[il;
3
while(a[0] > 1 && ala[0]] == 0) al[0]--;

void afis(short a[])

{

b

for(int i = al[0]; i >=1; --i)
fout << alil;
fout << '\n';

inline bool cmpSum(contBancar A, contBancar B)

{

b

int ¢ = cmp(A.sum, B.sum);
return ¢ > 0 || (c == 0 && A.ultima < B.ultima) ||
(c == 0 & & A.ultima == B.ultima && A.cod < B.cod);

inline bool cmpUltima(contBancar A, contBancar B)

{

3

return A.ultima > B.ultima || (A.ultima == B.ultima && A.cod < B.cod);

inline int cautaPozitia(long long x)

{

int

int st =1, dr = k, m;
while(st <= dr)

{
m= (st +dr) / 2;
if(vim].ultima >= x) st =m + 1;
else dr = m - 1;

3

return st;

main()

long long x;

int p;

fin >> C >> n;
for(int i = 1; i <= n; ++i)

{
fin >> x;
if(x > 0)
{

p = cautaPozitia(x);
if (p > k)

v[++k].ultima=x, v[k].sum[0]=0, aduna(v[k].sum, x), v[k].cod=++nrCont;
else v[pJ.ultima = x, aduna(v[pl.sum, x);

}

else

{
X %= -T;
short s[nrCif] = {3};
while(x)

s[++s[0]] = x % 10, x /= 10;
sort(v + 1, v + k + 1, cmpSum);

85

while(s[0] > 0 && k > 0)

{
if(cmp(s, v[k].sum) > 0)
{
scade(s, v[k].sum);
v[k].sum[@] = v[k].ultima = v[k].cod = 0;
__k;
}
else if(cmp(s, v[k].sum) == 0)
{
vlk].sum[0] = v[k].ultima = v[k].cod = 0;
__k;
s[o] = 0;
}
else
{
scade(v[k].sum, s);
s[0o] = 0;
}
3
sort(v + 1, v + k + 1, cmpUltima);
}
}
if(C == 1) fout << k << '\n"';
else
{
sort(v + 1, v + k + 1, cmpSum);
afis(v[1].sum);
3

return 0;

7.7 Problema Succesori

Propusa de: prof. Adrian Panaete, Colegiul National , August Treboniu Laurian”, Botosani

Rares a invatat la ora de informatica despre conceptul de succesor. Succesorul unui numar
natural nenul X este numarul S(X) obtinut din X, astfel: fiecare cifra strict mai mica decit 9 se
inlocuieste cu cifra mai mare cu o unitate, iar cifra 9 se inlocuieste cu cifra 0. Din numarul obtinut,
se elimina cifrele nule aflate pe primele pozitii, iar numarul 0 nu are succesor. De exemplu:

. S(12) = 23; . S(795) = 806: . 5(999912) = 23:
e 5(944) = 55: .« 5(999) = 0; . 5(9) =0.

Mihai, colegul lui Rares, 1i propune acestuia urmatoarea problema: se dau doua numere naturale
n, p si un sir de n numere naturale x;, zs, . .., z,. Se scriu cele n numere dispuse unul sub celalalt,
cate unul pe un rand. Pe fiecare rand, se adauga numere, dupa urmatoarea regula:

e Daca ultimul numar de pe un rand este nenul, atunci, la randul respectiv, se adauga succe-
sorul acelui ultim numar.

» Dupa ce s-au completat toate randurile, si astfel fiecare rand se termina cu valoarea 0, se
iau toate numerele de pe cele n randuri si se formeaza un sir.

» Se ordoneaza crescator sirul obtinut.

De exemplu, daca n = 3, iar cele 3 numere date initial de Mihai sunt 78,9552 si 752, avem initial
3 randuri, fiecare cu cate un numar:

1.] 78
2.1 9552
3. | 752

Dupa ce se completeaza randurile cu succesori, cele 3 randuri complete vor fi:

1.] 7889901234567890
2. 19552 663 774 885996 78 9 0
3. 752 863 974 8596 7890

Cu toate numerele, se formeaza sirul crescator urmator:

0001234567778889997885899096 663 752774863 885974996 9552

Cerinte

Cunoscand numerele naturale n, p si cele n numere naturale initiale, determinati numarul situat
pe pozitia p in sirul final obtinut, daca pozitiile sunt numerotate incepand cu 1.

Date de intrare

Pe prima linie a fisierului succesori.in se afla doua numere naturale n si p, separate prin spatiu,
cu semnificatia din enunt. Pe urmatoarele n linii ale fisierului, se afla cele n numere naturale
nenule x1, zg, ..., Ty, cate unul pe linie, cu semnificatia din enunt.

Date de iesire

Pe singura linie a fisierului succesori.out se va afla un singur numar natural, reprezentand
numarul situat pe pozitia p in sirul sortat, format dupa regula din enunt.

87

Restrictii

e 1< n <106
e 1< 2, < 10%;
e p < numarul total de numere din sirul ordonat obtinut.

Puncte Restrictii

#
1 7 n <1000
2
3
4

15 1000 < n < 10°
26 10° <n<5-10°
52 5-10° < n < 10°

Exemple

succesori.in succesori.out Explicatii
323 96 Exemplul este explicat in enuntul

78 problemei.
9552

752
5 65 89 Se scriu pe rand succesorii pe fiecare rand,
23314 conform regulii. In sirul sortat obtinut, pe

12 pozitia 65, se afla numarul 89.
10019324124 ’

5566778
1423

10 15 2 In sirul sortat obtinut dupa scrierea
145123187 succesorilor, pe pozitia 15, se afla numarul
292253412 9.

545220314
645144712
945114524
245100187
525656715
443123187
577856712
845223886

10 301 34596 In sirul sortat obtinut dupa scrierea
145123187698456712 succesorilor, pe pozitia 301, se afla

122133567292253412 numarul 34596.
545220314744452740

645123187698456712
945123187222400714
245100187698456712
245123180025656715
443123187698456716
545223112577856712
745223886198456718

7.8 Rezolvarea problemei Succesori
O posibila solutie genereaza toti succesorii elementelor citite, ordoneaza crescator sirul format

de acestia si afiseaza valoarea aferenta. Aceasta solutie este ineficienta, datorita restrictiilor de
numere mari.

38

Avand in vedere numarul mare de succesori care vor fi generati, o solutie eficienta nu va memora
toti succesorii fiecarui numar. Astfel, vom determina, prima data, numarul de cifre si cifra
dominanta a rezultatului. In acest scop, putem face urmatoarele observatii:

« Pentru fiecare numar de cifre si fiecare cifra dominanta, o valoare poate genera cel mult un
succesor;

« Daca vom genera toti succesorii unui numar, fara a-i memora, putem numara pentru fiecare
numar de cifre si pentru fiecare cifra dominanta cati succesori genereaza toate valorile
initiale;

o Pentru un anumit numar de cifre C, cifra dominanta a primului succesor generat avand C'
cifre nu depinde de valoarea Intregului numar, ci doar de cifrele de la pozitiile C, respectiv
C'+ 1. Mai precis, daca initial, cele doua cifre sunt z si y, atunci, cand y ajunge la valoarea
0, = va ajunge la valoarea t = (y+ 10 — 2)%10 si ¢ va fi cifra dominanta a primului succesor
generat cu C cifre. In consecinta, vor fi generati 10 — ¢ succesori cu C cifre, iar aceste cifre
vorfit,t+1,...,9.

Notam cu sol[C][d] numarul total de succesori cu C cifre care au cifra dominanta d.

Folosind ultima observatie, putem contoriza pentru fiecare valoare si fiecare numar de cifre o
unitate doar pentru sol[C][t]. Apoi, suméand partial de la 1 la 9 pe cifre, vom obtine pentru
fiecare cifra numarul real de succesori care vor fi generati. Aceasta abordare reduce foarte mult
timpul de calculare al valorilor sol[C][d].

Numarul de cifre si cifra dominanta a rezultatului pot fi acum determinate parcurgand matricea
sol in ordinea crescatoare a numarului de cifre si, apoi, in ordinea crescatoare a cifrelor dominante.
Sumand toate aceste valori, pana in momentul in care suma devine mai mare sau egala decat
pozitia dorita, determinam exact cifra dominanta si numarul de cifre al rezultatului. Deoarece
matricea sol are cel mult 18 linii si 9 coloane, numarul de adunari va fi cel mult 162.

In continuare, bazidndu-ne pe prima observatie si folosind aceeasi tehnica, putem genera, pentru
fiecare valoare initiala, cel mult un succesor cu numarul de cifre dorit si cifra dominanta dorita.
Scazand din pozitia ceruta suma numarului de succesori, avand strict mai putine cifre sau acelasi
numar de cifre, dar cu cifra dominanta strict mai mica, putem determina pe ce pozitie, printre
succesorii generati, vom gasi rezultatul. Sortand acesti succesori, determinam si care este valoarea
cerutd. Complexitatea finala a algoritmului este O(n - maxC + nlogn), unde maxC' este numarul
maxim de cifre pentru valorile din sirul initial.

De mentionat ca, pentru a determina al k-lea cel mai mic termen dintr-un sir, se poate folosi
algoritmul de partitionare folosit la quick sort sau functia std::nth_element, insa nu este
necesar pentru obtinerea punctajului maxim.

7.9 Cod-sursa pentru problema Succesori

using namespace std;

ifstream f("succesori.in");

ofstream g("succesori.out");

typedef int64_t Int;

const int N=1000010;

int n,m,k,poz,lo,hi,c,d,cif[30][30],sum[30]1[30],sul[30][30];
Int v[NI,VIN],P;

void precalc(Int X)

89

int

90

m++;
/// se considera ultimele doua cifre pentru numarul X
int u=X%10;

X/=10;

int p=X%10;

X/=10;

int c=1;

/// cat timp am cifre in X sau am cifra u sau am cifa p
while(p||u]|X)

{
if(p!=u)
{
int cMin=cif[ullpl;
sumfc][cMin]++;
m+=10-cMin;
}
u=p;
p=X%10;
X/=10;
Cct+;
}
main()
f>>n>>poz;
// ciflullp] = care va fi prima cifra daca cifra de pe o pozitie este u
// si este precedata de cifra p

// raspuns cand cifra p va deveni @ cifra u va deveni ciflullp]=(10-p+u)%10;
for(int u=0; u<10; u++)
for(int p=0; p<10; p++)
ciflullpl=(10-p+u)%10;
for(int i=1; i<=n; i++)
{
>>v[il;
precalc(v[il);
}
for(int c=1; c<=18; c++)
for(int d=1; d<=9; d++)
sum[c][d]+=sum[c][d-11];

lo=1;
hi=n;
while(1)
{
if (lo<=poz&&poz<=hi)
break;
d++;
if(d==10)
{
d=1;
Ctt,
}
if(sumlc]1ld])
{
lo=hi+1;
hi+=sum[c][d];
3
}
poz=poz-lo+1;
P=1;

for(int i=1; i<c; i++)P=P*10;
for(int i=1; i<=n; i++)

{
Int X=v[il,Z=0;
int u=X/P%10,p=X/P/10%10;
int ord=ciflullpl;
if (ord>0&8&ord<=d)
{
ord=cif[d][ul;
Int PP=1;
for(int j=1; j<=c; j++,PP*=10,X/=10)
Z+=PP*((X%10+ord)%10) ;
VI++k]1=Z;
}
3
sort(V+1,V+k+1);
g<<V[poz];
return 0;

91

92

Capitolul 8

ONI 2025, clasa a VIII-a

8.1 Problema Musuroi

Propusa de: stud. Andrei Boaca, Facultatea de Informatica, Universitatea ,, Alexandru Ioan
Cuza” lasi

Un musuroi format din mai multe celule este reprezentat ca o matrice cu N linii, numerotate de
la 1la N, si M coloane, numerotate de la 1 la M, fiecare element al matricii corespunzand unei
celule. Pozitia unei celule din musuroi este identificata prin linia si coloana pe care se afli. In
fiecare celula a musuroiului este desenata o sageata, care indica sensul in care o furnica aflata in
pozitia respectiva se va deplasa. Sagetile sunt codificate cu numere de la 0 la 7. Daca furnica se
afla in celula (lin, col) la momentul ¢, atunci la momentul ¢ + 1 ea va ajunge in pozitia:

o (lin, col 4+ 1), daca sageata este 0;
lin — 1, col + 1), daca sageata este 1;
lin — 1, col), daca sageata este 2;

(
(
(
o (lin—1, col — 1), daca sageata este 3;
(
(
(
(

1

lin-1,col+1

lin, col — 1), daca sageata este 4;
lin+ 1, col — 1), daca sageata este 5;
lin + 1, col), daca sageata este 6;
lin +1, col + 1), daca sageata este 7.

lin+1,col-1

In figura alituratd sunt ilustrate sagetile, fiind indicata
pozitia In care ajunge furnica pentru fiecare dintre ele.

Cerinte

Cunoscand reprezentarea musuroiului, scrieti un program care sa raspunda la () intrebari de
forma lin cols ling colp K, cu semnificatia “Daca o furnica porneste de la celula (ling, cols) la
momentul de timp ¢ = 0, la ce moment de timp va ajunge a K-a oara in pozitia (ling, colg)?”.
Se garanteaza ca furnica poate trece de cel putin K ori prin celula (ling, colg) daca porneste din
celula (linga, coly).

Date de intrare

Fisierul de intrare musuroi.in contine pe prima linie numerele naturale N si M cu semnificatia
din enunt. Pe urmatoarele N linii se afla cate M numere cuprinse Intre 0 si 7, ce reprezinta
sagetile din fiecare celula a matricii. Pe linia N + 2 se afla numarul natural (), reprezentand

93

numarul de intrebari, iar pe urmatoarele () linii se afla cele () intrebari, cite o intrebare pe o
linie, in forma descrisa mai sus. Valorile scrise pe aceeasi linie sunt separate prin cate un spatiu.

Date de iesire

Fisierul de iesire musuroi.out contine () linii, pe linia ¢ aflaindu-se un numar ce reprezinta ras-
punsul pentru cea de a i-a intrebare din fisierul de intrare (1 <i < Q).

Restrictii

e 2< N, M <1000

e 1 <@ < 100000

o In intrebarile pentru care K = 1 pozitiile (lina, cola) si (linpg, colp) pot s coincidi, caz in
care raspunsul este 0.

e« 1 < K < 1000000000

Se garanteaza ca furnica, deplasandu-se in sensul sagetilor, va ramane in musuroi.

Puncte Restrictii

#
1 11 K=1, 2<N,MQ<100
2
3
4

37 K =1, fara restrictii suplimentare

9 1<K<7, 2<N,MQ <100

43 K > 1, fara restrictii suplimentare

Exemple
musuroi.in musuroi.out
6 6 5
764006 6
052034
250526
Q75063
617206
000024
2
24261
4266
6 6 15
764006 22
052034
250526
075063
617206
Q00024
2
2426
42665
Explicatie

Exemplul 1. Prima intrebare: furnica pleaca la momentul ¢ = 0 din pozitia (2,4). Traseul
furnicii este: (2,4) — (2,5) — (1,4) — (1,5) — (1,6) — (2,6). La momentul ¢ = 5 a ajuns
la destinatie, in pozitia (2,6) pentru prima data (K = 1). A doua intrebare: furnica pleaca la

94

momentul ¢ = 0 din pozitia (4,2). Traseul furnicii este: (4,2) — (5,3) — (6,4) — (6,5) —
(5,5) — (5,6) — (6,6). La momentul ¢ = 6 a ajuns la destinatie, in pozitia (6,6) pentru prima
data (K =1).

Exemplul 2. Prima intrebare: furnica pleaca la momentul ¢ = 0 din pozitia (2,4). Traseul
furnicii este: (2,4) — (2,5) — (1,4) — (1,5) — (1,6) — (2,6) — (2,5) — (1,4) — (1,5) —
(1,6) — (2,6) — (2,5) — (1,4) — (1,5) — (1,6) — (2,6). La momentul ¢ = 15 a ajuns la
destinatie, In pozitia (2,6) pentru a treia oara (K = 3). A doua intrebare: furnica pleaca la
momentul ¢ = 0 din pozitia (4,2). Traseul furnicii este: (4,2) — (5,3) — (6,4) — (6,5) —
(5,5) = (5,6) — (6,6) — (6,5) = (5,5) — (5,6) — (6,6) — (6,5) — (5,5) — (5,6) — (6,6) —

(6,5) — (5,5) — (5,6) — (6,6) — (6,5) — (5,5) — (5,6) — (6,6). La momentul ¢ = 22 a ajuns
la destinatie, in pozitia (6,6) pentru a cincea oara (K = 5).

8.2 Rezolvarea problemei Musuroi

Solutie O(Q*N*M*K)

Se poate simula drumul pe care il parcurge furnica, oprindu-ne in momentul in care am ajuns
a K-a data la celula de final. Aceasta solutie se Incadreaza in timp pentru N, M, @ < 100 si
K <5.

Solutie O(Q*N*M)

Observatia principala este ca, avand In vedere ca furnica nu poate iesi din matrice, va putea
parcurge o infinitate de pasi prin matrice. Prin urmare, exista o celula prin care va trece de cel
putin doua ori. Sa notam prima celula pe care o va Intalni furnica a doua oara cu P;. Este evident
ca, daca pornind din celula P1 am putut ajunge inca o data in celula P1 avem de fapt o secventa
periodica de celule prin care trece furnica. Vom nota lungimea acestei secvente periodice cu L. In
consecinta, orice drum al unei furnici care porneste din celula A va fi de forma A, A,, As,..., P,
Py, Ps,... P, Py, Py, Ps, Pentru solutia O(Q * N * M) putem simula drumul furnicii pana
cand intalneste a doua oara o celula, moment in care stim ca am gasit celula P;. Astfel, celulele
care au aparut intre cele doua aparitii ale lui P, vor face parte din perioada. Deci, pentru orice
celula din perioada, daca aceasta apare prima data la momentul 7', atunci va aparea urmatoarea
data la momentul 7'+ L, a treia oara la momentul 7"+ 2 * L, s.a.m.d. Deci, putem calcula usor
timpul dupa care celula va aparea a K-a oara.

Solutie O(Q + N*M)

Pornind de la solutia anterioara, putem observa ca nu este necesar ca de fiecare data sa parcurgem
tot drumul pana la celula P, pentru fiecare intrebare. Mai mult, putem precalcula celula P,
distanta pana la aceasta si lungimea perioadei pentru fiecare celula din matrice. In plus, vom
retine si distanta fiecarei celule ce face parte dintr-o perioada catre o celula pe care o vom desemna
celula de start pentru acea perioada (acea celula poate fi aleasa arbitrar). Vom proceda in felul
urmator pentru a afla toate aceste informatii.

Consideram initial toate celulele ca fiind nevizitate. Iteram prin celule intr-o ordine arbitrara,
iar daca aceasta nu a fost vizitata, vom incepe sa parcurgem drumul pornind din ea. Daca la un
moment dat inalnim pe drum o celula vizitata intr-o iteratie anterioara, atunci stim ca pentru
acea celula am calculat deja informatiile necesare, prin urmare putem distribui acele informatii
corespunzator si catre celulele vizitate in iteratia curenta. Altfel, daca intdlnim o celula deja
vizitata In iteratia curenta, inseamna ca am gasit celula P si lungimea perioadei pentru toate
celulele parcurse in iteratia curenta, deci le putem din nou actualiza corespunzator. Acum, putem

95

raspunde la fiecare intrebare in O(1), deoarece stim lungimea prefixului pana la celula Py, precum
si lungimea L.

8.3 Cod-sursa pentru problema Musuroi

#include <bits/stdc++.h>

using namespace std;

ifstream fin("musuroi.in");

ofstream fout("musuroi.out");

int diri[8]= {0,-1,-1,-1,0,1,1,13};

// deplasarea pe linii in functie de indicele sagetii
int dirjC8]= {1,1,0,-1,-1,-1,0,1};

// deplasarea pe coloane in functie de indicele sagetii
int n,m,v[1005][1005],cerinta,q;

int comp[1005][1005];

// comp[x][y] -> indicele secventei periodice in care va ajunge celula (x,y)
int dist[1005][1005],who[1005]1[1005];

bool oncycle[1005][1005];

int 1g[1005%10057;

// lungimea fiecarei secvente periodice

void move(int &x,int &y)

// muta furnica de la celula (x,y) in directia sagetii

{
int dx=dirilv[x][yl];
int dy=dirj[vIx1Lyl];
x+=dx;
y+=dy;

}

int main()

{
fin>>n>>m;

for(int i=1; i<=n; i++)
for(int j=1; j<=m; j++)
fin>>v[iJ[j];
int nrcomp=0;
for (int px=1; px<=n; px++)
for (int py=1; py<=m; py++)
if (comp[px1[pyl==0)
//celula nu a fost parcursa pana acum, deci incepem o parcurgere din ea
{
int x=px;
int y=py;
while (comp[x][y]==0)
//pbarcurgem cat timp celula in care suntem nu a fost deja vizitata
{
comp[x]1Lyl=-1;
//marcam pentru a sti ca am trecut prin celula la iteratia curenta
move(X,y);
3
if (comp[x]Ly]==-1)
//celula in care ne oprim a fost vizitata in iteratia curenta
//=> am gasit celula P
{
nrcomp++; // am gasit o noua secventa periodica
int X=x;
int Y=y;
X=pX;
Y=pY;
int cnt=0;

96

//lungimea secventei dinainte de a intra in secventa periodica
while (x!=X]]|y!=Y)
//gasim portiunea de secventa dinaintea celulei P

{ cnt++;
move(X,y);

}

X=pX; Y=pYy;

while (x!=X || y!=Y)
//setam distantele de la celulele din afara secventei periodice
//pana la celula P
{
comp[x]Lyl=nrcomp;
dist[xJ[yl=cnt;
who[x][yJ=0;
cnt--;
move(x,y);
}
X=X;
y=Y;
cnt=0;
while (true) //gasim secventa periodica
{
comp[x]LyJl=nrcomp;
dist[x][y]1=0;
who[x][y]l=cnt;
//numarul de ordine al celulei in cadrul secventei periodice
cnt++;
oncyclel[x]lyl=1; //marcam ca este pe secventa periodica
move(X,y);
if (x==X&&y==Y)
break;
}
lg[nrcompl=cnt;
}
else
//celula in care ne-am oprit a fost vizitata in alta iteratie
//=> nu avem secventa periodica noua
{
int X=x;
int Y=y;
int c=comp[XJ[Y1;
int cnt=dist[XI[Y];
//lungimea secventei dinainte de a intra in secventa periodica
X=pX;
Y=PY;
while (x!=X||y!=Y)
//parcurgem bucata noua din secventa periodica

{
cnt++;
move(Xx,y);

3

X=pX;

Y=pYy;

while(x!=X]]y!=Y)

{
comp[x]1Lyl=c;
dist[x][yJ=cnt;
cnt--;
who[x][yJ]=who[X1[Y];
move(Xx,y);

3

97

98

}
fin>>q;
while (g--)
{
long long xa,ya,xb,yb,k;
fin>>xa>>ya>>xb>>yb>>k;
if (k==1)
{
if (loncycle[xb]I[ybl)
// celula (xb,yb) se afla pe secventa periodica
fout<<dist[xallyal-dist[xb][ybl<<'\n"';
// diferenta de distante pana la P
else
{
int rez=dist[xallyal+
(who[xb1[ybl-who[xallyal+lglcomp[xallyall)%lglcomp[xallyall;
// distanta pana la P + distanta de la P la celula dorita
fout<<rez<<'\n';

3
}
else
{
long long rez=dist[xallyal+
(who[xb][ybJl-who[xallyal+lgl[comp[xallyall)%lglcomp[xallyall;
//distanta pana la P + distanta de la P la celula dorita
rez+=(k-1)*(1LL*1g[comp[xallyall);
//parcurgem de inca (k-1) ori secventa periodica
fout<<rez<<'\n';

8.4 Problema Notwen

Propusa de: stud. Dumitru Ilie, Facultatea de Matematica-Informatica, Universitatea Bucuresti

Notwen a auzit de descoperirile prietenului sau de pe Pamant si a decis sa studieze si el legile
gravitatiei pe planeta sa. Pentru aceasta a conceput un experiment, care utilizeaza doua drepte
(o dreapta verticala si o dreapta oblica, inclinata la un unghi oarecare fata de orizontald) si un
super-mar (care, pentru a simplifica analiza, este considerat punctiform), ca in figura.

Figura 1. Traiectoria unui super-mar situat initial la o distanta de 14 cm de dreapta verticala

Super-marul este lasat sa cada de la o inaltime mare, de la o distanta de x cm fata de dreapta
verticala. Super-marul cade vertical pana cand intalneste dreapta inclinata. Cand super-marul
se ciocneste de dreapta inclinata acesta sare mult in sus si spre dreapta verticala, deplasandu-se
astfel cu 1 cm spre dreapta verticala. Apoi, din cauza gravitatiei, el cade din nou vertical pana
intalneste dreapta Inclinata. La a doua ciocnire, super-marul sare mult In sus si spre dreapta
verticala, deplasandu-se astfel cu 2 cm spre dreapta verticala. A treia oara cand se ciocneste cu
dreapta inclinata sare mult In sus si spre dreapta verticala, deplasandu-se astfel cu 4 cm spre
dreapta verticala s.a.m.d. Notwen a observat ca la fiecare ciocnire, exceptand prima, super-marul
se deplasecaza spre dreapta verticala cu o distanta dubla fata de cea de la deplasarea precedenta.
Vom numi acest proces oscilatie.

La un moment dat super-marul se ciocneste de dreapta verticala si are loc un recul. Daca la
ultima ciocnire cu dreapta inclinata super-marul s-a aflat la o distanta de y cm de verticala,
urmand sa se deplaseze cu z cm, dar y < z, acesta se va ciocni de dreapta verticala si va avea un
recul de z — y cm, adica va fi ,aruncat” inapoi la distanta z — y cm de dreapta verticala.

Apoi super-marul isi reia miscarea in acelasi mod, apropiindu-se de verticala la fiecare ciocnire
cu dreapta inclinatda mai intai cu 1 ¢m, apoi cu 2 cm, 4 cm, s.a.m.d.

Studiind miscarea super-marului Notwen a observat ca cele doua procese (oscilatie, recul) alter-
neaza pana cand super-marul ajunge la distanta de 0 cm de dreapta verticala si se opreste.

In Figura 1. este ilustrati miscarea super-marului pentru cazul in care experimentul incepe de la
o distanta fata de 14 cm de dreapta verticala. Prima oscilatie este ilustrata cu o linie gri: super-
marul se ciocneste succesiv de dreapta inclinata la 14, 13, 11, respectiv 7 cm fata de verticala,
dupa care se ciocneste de dreapta verticala si are un recul (ilustrat cu linie rosie) si ajunge la 8
~ 7 =1 cm de dreapta aceasta. Incepe al doilea proces de oscilatie (ilustrat cu linie albastra),
dar dupa prima ciocnire cu dreapta inclinata se deplaseaza cu 1 cm spre dreapta verticala, deci
ajunge chiar pe dreapta (la 0 cm de aceasta) si atunci se opreste.

99

Cerinte

Cunoscand distanta x la care se afla super-marul fata de dreapta verticala la Inceputul experi-
mentului:

1. Determinati numarul de ciocniri ale super-marului cu dreapta verticala.
2. Determinati numarul de ciocniri ale super-marului cu dreapta inclinata.

Date de intrare

Fisierul de intrare notwen.in contine pe prima linie numarul C reprezentand cerinta care trebuie
rezolvata (1 sau 2). Pe a doua linie se aflda numarul natural = cu semnificatia din enunt.

Date de iesire

Fisierul de iesire notwen.out contine o singura linie, pe care este scris numarul determinat pentru
cerinta C' din fisierul de intrare.

Restrictii

H

o 1 S T S 1010000

Puncte Restrictii

1 12 C=11<z<10"
2 12 C=21<z<10"
3 12 C=1,10"% < 2 < 10"
4

5

6

7

8

12 C =2,10" < 2 < 101
17 C =1,10"0 < g < 101000
17 C = 2,101 < g < 101000

9 C=1,10"% < g < 1010000
9 C = 27 101000 <z< 1010000
Exemple
notwen.in notwen.out

1 2
14
2 5
14
1 5
2025
2 24
2025
1 42
12345678901234567890
2 1492
12345678901234567890

100

8.5 Rezolvarea problemei Notwen

Solutii partiale

Se poate simula operatia descrisa in enunt utilizand operatii cu numere mari.

Solutia oficiala
Observatie: Reprezentam numerele in baza 2 si observam cum se modifica distanta.

Cateva exemple:

14 = 11105 — 11015 — 10115 — 01115 — —1 — 1
= 00015 — 0000,
=0

8 = 1000, — 01115 — 0101y — 0001y — =7 — 7
= (01113 — 01103 — 01002 — 00002
=0

21 = 101015 — 101002 — 100102 — 011105 — 001102 — —10 — 10
= 010105 — 010012 — 00111 — 00011y — —5 — 5
= 001012 — 001002 — 00010y — —2 — 2
= 00010 — 00001y — —1 —1
= (000015 — 000004
=0

Daca analizam cateva numere putem observa o regula generala. Pornind de la un numar in binar,
prima coordonata dupa ciocnirea cu bara verticala se obtine inversand bitii numarului (un bit 0
se transforma in 1 si un bit 1 in 0).

Demonstratia acestui fapt este urmatoarea:

Numerele scazute din distanta sunt 1,2,4,8,16,.... Dar de fapt se scade un prefix din acest
sir, pana cand numarul devine negativ. Sirul de prefixe este 1,3,7,15,31,.... Acestea sunt
numere de forma 2 — 1 unde k este un numir natural nenul. In binar acestea au forma
19,119, 1115, 11115, 111115,

Primul moment in care super-marul lasat sa cada de la distanta x se loveste de bara verticala este
dat de k-ul minim pentru care 2¥ —1 > . Acesta corespunde exact celui mai semnificativ bit din
x. Pozitia super-marului dupa ciocnirea de bara verticala este — (93 — (2’“ — 1)) =2F_1—2.

Deoarece 2 —1 = 1111... 15 iar z < 2F — 1 formula 2¥ — 1 — z se reduce doar la inversarea bitilor
lui x.

Obtinem urmatoarea solutie:

Convertim numarul in baza 2. Pentru fiecare bit i care difera de bitul ¢ + 1 vom adauga ceva la
raspuns, fie 1 pentru cerinta 1, fie i + 1 (sau ¢ daca se indexeaza de la 1) pentru cerinta 2.

101

Conversia 1n baza 2

Algoritmul clasic de conversie al unui numar N din baza 10 in baza 2 foloseste impartiri repetate
la 2. Resturile obtinute sunt scrise in ordine inversa pentru a obtine reprezentarea binara a lui
N. Acest algoritm, cel putin in forma aceasta este prea lent.

Pentru a optimiza algoritmul avem 2 posibilitati.

1. Stocidm numérul intr-o baza mai mare, usor de calculat din baza 10, mai exact 10710, Pentru
aceasta vom stoca Bjg cifre Intr-un singur numar.

2. Convertim numarul intr-o baza mai mare, din care putem ajunge usor la baza 2, mai exact
282 Dupa ce am facut aceasta conversie, fiecare ,cifra” din aceasta bazi va reprezenta B
biti.

Solutia oficiala foloseste ambele optimizari, cu By = 9 si By = 30. Astfel convertim un numar
din baza 10° in baza 23°. Aceste numere sunt apropiate si se poate observa cd algoritmul va avea
complexitatea O (C?) unde C este numarul de ,cifre” din reprezentarea in baza 10° a lui N.

Bonus

Aceste doua optimizari imbunatatesc algoritmul de conversie. Exista totusi o limita impusa de
reprezentarea numerelor pe calculator, depinzand de dimensiunea maxima a unui numar. Mai
exact, conversia poate genera o eroare daca 252 - 10510 — 1 nu poate fi reprezentat fara probleme
pe calculator.

Astfel, daca ne dorim sa crestem By, s-ar putea ca B, sa trebuiasca sa scada pentru a nu avea
probleme.

8.6 Cod-sursa pentru problema Notwen

const int NMAX=2000, B2=30;
const int BASE2=1073741824;
const int BASE10=1000000000, CIFMAX=10005, BITSMAX=40000;

int compressed[NMAX], N, B;
char cifre[CIFMAX];
bool bits[BITSMAX];

void conversie_1()

{
int i, plo=1;
for(i=0; cifre[i]!="'\n"' && cifre[i]; ++i);
for(--i; i>-1; --i)
{
compressed[N]+=p10*(cifre[i]-'0");
p10*=10;
if(p10==BASE10)
{
p10=1;
++N;
3
}
if(compressed[N])
++N;
}

102

int divBaseP2()

{

b

long long rest=0;
int i;

for(i=N-1; i>-1; --i)

{
rest=rest*BASE10+compressed[i];
compressed[i]=rest/BASE2;
rest%=BASE2;

3

while(N && compressed[N-1]==0)
__N;

return rest;

void conversie_2()

{

}

int i, rest;

while(N)
{
rest=divBaseP2();
for(i=0; i<B2; ++i)
{
bits[B++]=rest%2;
rest/=2;

}

while(B && !'bits[B-1])
__B;

void debug_print()

{

}

int i;
for(i=B-1; i>-1; --i)

printf("%c", bits[il 2 '1' : '0');

long long cerinta_1()

{

bool prev= ;
int i;
long long ans=0;

for(i=B-1; i>-1; --i)

{
if(prev!=bits[i])
{
prev=bits[i];
++ans;
3
3
return ans;

103

long long cerinta_2()
{
bool prev= ;
int i;
long long ans=0;

for(i=B-1; i>-1; --i)
{
if(prev!=bits[i])
{
prev=bits[i];
ans+=i+1;

b

return ans;

}

int main()

{
FILEx f=fopen("notwen.in", "r"), *g=fopen('notwen.out", "w");
int C;

fscanf(f, "%d", &C);

fgets(cifre, CIFMAX, f);

fgets(cifre, CIFMAX, f);

conversie_1();

conversie_2();

// debug_print();

fprintf(g, "%11d\n", C==1 ? cerinta_1() : cerinta_2());
fclose(f); fclose(g);

return 0;

104

8.7 Problema Program

Propusa de: stud. Razvan Rotaru, Facultatea de Informatica, Universitatea ,, Alexandru loan
Cuza” lasi

Mihaita, elevul talentat al exigentului profesor de muzica Jean Carapace, primeste un program de
studiu special, care consta in studierea in ordine a N capitole, numerotate de la 1 la N. Capitolul
i (1 <1i < N) trebuie sa fie studiat exact z; zile consecutive. Studiul capitolului ¢ (1 < i < N)
trebuie sa se termine cel tarziu in ziua ¢;. Pentru a finaliza cu succes programul de studiu, Mihaita
trebuie sa studieze toate capitolele (se garanteaza ca acest lucru este posibil).

Pe langa muzica, Mihaita iubeste expeditiile montane. Prietenii 1i fac P propuneri, fiecare pro-
punere continand una sau mai multe expeditii. Pentru fiecare expeditie se cunoaste intervalul de
timp [a, b] in care se desfasoara (incepe in ziua a si se termina in ziua b, inclusiv). O propunere se
numeste acceptabila daca Mihaita poate sa mearga in toate expeditiile din propunerea respectiva
si sa finalizeze cu succes programul de studiu.

Cerinte
Se cunosc programul de studiu, precum si propunerile primite:

1. Determinati ziua numerotata cu valoarea maxima in care Mihdita poate incepe programul
de studiu astfel incat sa-l finalizeze cu succes, In cazul in care nu merge in nicio expeditie.

2. Pentru fiecare propunere, determinati numarul maxim de expeditii care se suprapun in
aceeasl zl.

3. Pentru fiecare propunere, verificati daca este acceptabila, stiind ca nicio propunere nu con-
tine expeditii care se suprapun.

Date de intrare

Fisierul de intrare program.in contine pe prima linie numarul natural C, reprezentand cerinta
care trebuie rezolvata (1, 2 sau 3). Pe a doua linie se afla numarul natural N. Pe a treia linie se
afla N numere naturale z; 2z5...zy. Pe a patra linie se afla N numere naturale t; t5...ty. Pe a
cincea linie se afla numarul natural P. Toate aceste valori au semnificatia din enunt. Urmeaza
descrierea celor P propuneri, fiecare fiind descrisa pe cate 3 linii:

» pe prima linie numarul natural M, reprezentand numarul de expeditii din propunere;

e pe a doua linie M numere naturale a; as...ay, unde a; reprezinta ziua de incepere a
expeditiei i (1 <i < M);

e pe a treia linie M numere naturale b; by...0bys, unde b; reprezinta ultima zi a expeditiei ¢
(1<i<M).

Valorile scrise pe aceeasi linie In fisierul de intrare, sunt separate prin cdte un singur spatiu.

Date de iesire
Fisierul de iesire program.out contine o singura linie, pe care se afiseaza:

o daca C' = 1: un numar natural reprezentand raspunsul la cerinta 1;

« daca C = 2: P numere naturale separate prin cate un spatiu, unde al i-lea numar reprezinta
numarul maxim de expeditii din propunerea i (1 <1i < P) care se suprapun in aceeasi zi;

o daca C' = 3: P numere naturale separate prin cate un spatiu, unde al ¢-lea numar este 1
daca propunerea i este acceptabild sau 0 in caz contrar (1 < i < P).

105

Restrictii

e« 1< N,P,M < 200000

o 1< 2,t;<10%, pentrul <i < N

e 1 <a<b<10° pentru fiecare expeditie din oricare propunere

e 1 < Vmaz <10 unde Vmazx este maximul dintre z;, ¢;, a, b pentru 1 < i < N si a, b din
toate expeditiile.

1 <8 <200000, unde S este numarul total de expeditii din toate cele P propuneri

Zilele sunt numerotate incepand cu 1.

Puncte Restrictii

1 12 C=1,P=1,1<N <5000
2 9 C =1, P =1, fara alte restrictii
3

4

5

6

15 C=2,N=1,1<Vmaz, P <5000
17 C =2, N =1, fara alte restrictii

29 C=31<N,P <5000

18 C = 3, fara alte restrictii

Exemple
program.in program.out Explicatii
1 3 Cerinta este 1.
5 Ziua numerotata cu valoarea maxima in
23143 care poate fi inceput programul de studiu
57 10 14 20 ~ AL v .
1 astfel incat sa se finalizeze cu succes este 3.
1 Capitolul 1 este studiat in zilele 3, 4.
1 Capitolul 2 este studiat in zilele 5, 6, 7.
:
2 14 Cerinta este 2.
1 Pentru prima propunere, numarul maxim
! de expeditii care au loc In aceeasi zi este 1,
; deoarece perioadele nu se suprapun.
3 Pentru a doua propunere raspunsul este 4,
3169 deoarece expeditiile 2, 3, 4 si 6 se
z61 17 9 desfasoara simultan in ziua 10.
3210716
8 10 16 12 3 14
3 10 Cerinta este 3. Explicatia este ilustrata in
5 figurile urmatoare.
23143
57 10 14 20
2
3
3169
417 9
3
16 10 1
18 11 2

Prima propunere ii permite lui Mihaita sa parcurga toate capitolele la timp:

106

A doua propunere nu ii permite lui Mihaita sa parcurga toate capitolele la timp:

- -

g §

H H H ' H

' H H : H

: H H
1 1 L 2 L 3 1 4 | 5 H 6 | 7 1 8 | 9 I'IO \ n I'|2 1 13 | 14 i 15 16 17 1 18 19 20 i 21 |
) 1) 1 I 1] 1]] 1] 1] 1]] 1] 1 1 1

t1 t2 t3 t4 t5

8.8 Rezolvarea problemei Program

Subtaskul 1: 1 < N <5000, P=1,C =1

Se determina ziua maxima de Incepere a studiului astfel incat toate cursurile sa se finalizeze
la timp, fara a include excursiile. Deoarece cursurile se desfasoara secvential, timpul minim de
finalizare al fiecarui curs se calculeaza prin insumarea duratelor cursurilor anterioare si a celui
curent. Folosind tehnica sumelor partiale, se obtine pentru fiecare curs timpul minim necesar
finalizarii acestuia. Acest timp se compara cu termenul limita al cursului, iar diferenta (termenul
limita minus timpul minim de finalizare) indica cu cit poate fi améanata inceperea studiului fara
a Incalca restrictiile de timp. Pentru determinarea minimului, se compara toate perechile de
diferente. Ziua maxima de start se stabileste prin identificarea valorii minime a acestor diferente,
aceasta fiind numarul maxim de zile In care Mihaita poate sa nu invete, la care adunam 1.

Complexitate: O(N?).

Observatie: o solutie care Incearca sa fixeze initial, In mod consecutiv, ziua in care Mihaita
incepe parcurgerea cursurilor si verifica pentru fiecare curs daca poate fi finalizat la timp, cautand
valoarea maxima a acestei zile de start pentru care conditia este satisfacuta, obtine jumatate din
punctajul pentru acest subtask. Complexitate: O(Vmaz x N).

Subtaskul 2: Fara restrictii suplimentare, C =1, P =1

Pentru a gasi minimul dintre diferente este suficienta o singura parcurgere, in care retinem minimul
de zile necesare, intr-o variabila auxiliara. O alta abordare posibila pentru ¢ = 1 este sa Incercam
sa pozitionam cursurile cat mai aproape de termenul limita, afland astfel ziua maxima in care
Mihaita se poate apuca de studierea cursurilor. Pentru aceasta abordare trebuie sa parcurgem
cursurile de la ultimul la primul si sa ne asiguram ca perioadele in care fixam parcurgerea cursurilor
nu se intersecteaza. Complexitate: O(N).

Subtaskul 3: 1 < P, Vmax <5000, N =1, C =2

O excursie va fi asimilata cu un interval inchis. Pentru a determina numarul maxim de excursii
desfasurate simultan intr-o anumita zi, se aplica algoritmul ,,Smenul lui Mars”. Metoda utilizeaza
un vector de frecventa in care, pentru fiecare excursie, se marcheaza extremitatea de Inceput
cu +1 si cu -1 pozitia imediat urmatoare extremitatii de final. Dupa parcurgerea vectorului de
frecventa in ordine si calcularea sumei partiale, se obtine numarul de excursii active pentru fiecare

107

zi. Numarul maxim obtinut la un moment dat indica numarul maxim de excursii care se suprapun
in aceeasi zi. Complexitate: O(P % Vmax).

Subtaskul 4: Fara restrictii suplimentare, C =2, N =1

In acest subtask, extremitatile intervalelor excursiilor pot avea valori foarte mari, ceea ce face
imposibila utilizarea unui vector de frecventa. Pentru a rezolva aceasta problema se utilizeaza o
tehnica de ,liniarizare” a extremitatilor. Se extrag toate extremitatile intervalelor si se etiche-
teaza conform tipului lor: extremitatile de inceput sunt marcate cu +1, iar cele de final cu -1.
Aceste extremitati se sorteaza in ordine cronologica, iar, in caz de egalitate, se acorda prioritate
extremitatilor de inceput (pentru a reflecta corect inceperea unui interval nainte ca altul care are
un timp de final identic sa se incheie). Se parcurge lista sortata:

» daca extremitatea curenta este una Inceput al unui interval, crestem numarul de excursii
care se desfasoara la momentul curent;

o daca extremitatea curenta este una de final al unui interval, comparam numarul de excursii
care se desfasoara simultan la momentul curent (numarul de intervale deschise care nu
au fost Inchise) cu maximul, apoi scadem cu 1 numarul de excursii care se desfasoara la
momentul curent.

Valoarea maxima obtinuta indica numarul maxim de excursii care se suprapun Intr-o anumita zi.
Complexitate: O(S * l0gS).

Subtaskul 5: 1 < N, P <5000, C =3

Solutia se bazeaza pe un algoritm de tip interclasare: se parcurg simultan lista capitolelor si lista
excursiilor, ambele sortate crescator. Folosim o variabila care retine prima zi disponibila pentru
studiu. Pentru fiecare excursie se analizeaza perioada libera de studiu dinaintea datei de start a
excursiei, pentru a verifica daca aceasta permite finalizarea completa a capitolului curent. Daca
intervalul liber este suficient pentru a termina cursul, se programeaza acel capitol si se trece la
capitolul urmator, continuand evaluarea in cadrul aceluiasi interval liber. Daca intervalul nu este
suficient de mare, se actualizeaza data disponibila pentru studiu la ziua imediat urmatoare zilei
in care se termina excursia, iar incercarea de a finaliza acelasi capitol se reia cu noua perioada
libera. Propunerea este acceptata doar daca, pentru fiecare curs, ziua de finaliza nu depaseste
termenul limita. Complexitate: O(P * N), deoarece pentru fiecare propunere iteram prin fiecare
capitol.

Subtaskul 6 — Fara restrictii suplimentare, C' = 3

Se extinde metoda de la Subtaskul 5 si se optimizeaza determinarea numarului maxim de cursuri
ce pot fi parcurse Intr-un interval liber prin utilizarea cautarii binare pe vectorul de sume partiale
al duratelor cursurilor (calculat si la Subtaskul 1). Se precalculeaza, de asemenea, un vector
auxiliar care, pentru fiecare curs, retine minimul diferentei dintre termenul limita si numarul de
zile necesare studiului cursului curent si al celor ce urmeaza, facilitand astfel verificarea rapida a
constrangerilor. Pentru fiecare propunere de excursii, intervalele se sorteaza crescator dupa extre-
mitatea initiala. Parcurgem intervalele libere dinaintea fiecarei excursii si, pentru fiecare interval
liber, cautam binar pe vectorul de sume partiale pentru a identifica rapid numarul maxim de
cursuri finalizabile inainte de Inceperea excursiei curente. Daca nu se pot programa toate cursu-
rile disponibile in intervalul respectiv, se trece la urmatoarea excursie, se actualizeaza perioada
de studiu disponibila si se repeta verificarea pentru cursurile ramase, asigurandu-se totodata ca
fiecare termen limita este respectat. Complexitate: O(SlogN).

108

8.9 Cod-sursa pentru problema Program

#include <fstream>
#include <algorithm>
using namespace std;
ifstream cin ("program.in");
ofstream cout ("program.out");
int s[200008],spatiu[200008],min_spatiu[200008];
int i,m,n,p,Jj,c,suma,minn;
// retinem pentru fiecare capitol numarul de zile necesare si termenul limita
struct capitol
{
int nr_zile,term_lim;
} v[2000081];

// retinem pentru fiecare excursie capetele intervalului acesteia
struct excursie
{
int a,b;
} grupl[2000087;

// retinem pentru fiecare capat pozitia si valoarea sa
struct punct
{
int poz,val;
} pct[4000087;

// functie de comparare care defineste modul de sortare a capetelor fiecarei excursii
bool compar_pct(punct p1,punct p2)
{
// sortam dupa pozitie, iar in caz de egalitate, prioritizam punctele de inceput
return pl.poz<p2.poz || pl.poz==p2.poz && pl.val<p2.val;
}
// functie de comparare care defineste modul de sortare a excursiilor
bool compar_gr(excursie el,excursie e2)
{
// sortam excursiile crescator dupa capatul din stanga
return el.a<e2.a;

// functie care citeste un grup de excursii
void citire_grup()

{
cin>>m;
for(int j=1; j<=m; j++)
cin>>grupl[j]l.a;
for(int j=1; j<=m; j++)
cin>>grupl[j]l.b;
}

// functie care returneaza numarul maxim de excursii care au loc in acelasi timp
int int_seg()
{
int j,cnt=0,maxx=0;
for(j=1; j<=m; j++)
{
pctlj*x2-11= {grupljl.a,1};
pctlj*2]= {grup[jl.b+1,-1};
3
sort(pct+1,pct+m*2+1, compar_pct);
for(j=1; j<=mx2; j++)
{

109

cnt+=pct[j].val;
maxx=max (maxx,cnt);

b

return maxx;

int caut_bin(int val)

{
int st=1,dr=n,mij,ras=0;
while(dr>=st)

{
mij=(dr+st)/2;
if(s[mijl<val)
{
ras=mij;
st=mij+1;
}
else
{
dr=mij-1;
}
3
return ras;

}

int main()

{
ios_base::sync_with_stdio(DK
cin.tie()
cin>>c;
cin>>n;

for(i=1; i<=n; i++)
cin>>v[i].nr_zile;

for(i=1; i<=n; i++)
cin>>v[i].term_lim;

if(c==1)

{
cin>>p;
minn=1e9;

for (i=1; i<=p; i++) citire_grup();
for (i=1; i<=n; i++)
{

suma+=v[i].nr_zile;

minn=min(minn,v[i].term_lim-suma);

}
if (minn<0)
cout<<-1;
else
cout<<minn+1;
}
else if (c==2)
{
cin>>p;
for (i=1; i<=p; i++)
{

citire_grup();

110

cout<<int_seg()<<' ';
}
3
else
{
for (i=1; i<=n; i++)
{
s[il=s[i-1]J+v[il.nr_zile;
spatiufil=v[i].term_lim-s[i];
3
min_spatiuln]=spatiuln];
for (i=n-1; i>=1; i--)
min_spatiulil=min(min_spatiuli+1],spatiulil);
// min_spatiul[i] reprezinta numarul maxim de zile in care Mihaita
// poate sa nu studieze, inainte de a parcurge cursul 1
cin>>p;
for (i=1; i<=p; it++)
{
citire_grup();
int ok=1;
sort(grup+1,grup+m+1,compar_gr);
int loc_liber=0;
for (j=1; j<=m; j++)
{
int poz=caut_bin(grup[jl.a-loc_liber);
if (poz==n)
// daca am reusit sa parcurgem toate cursurile,
// inseamna ca propunerea de excursii este acceptabila
break;
loc_liber=grup[j].b-s[poz];
// variabila "loc_liber" reprezinta cate zile a stat Mihaita
// fara sa studieze pana in momentul actual
if (min_spatiulpoz+1]-loc_liber<o)
// verificam daca vom putea duce toate cursurile viitoare la bun sfarsit
// (sa respecte termenul limita)
{
ok=0;
break;

b

cout<<ok<<" ";

}
3

return 0;

b

111

112

Capitolul 9

Baraj selectie lot juniori ONI 2025

9.1 Problema Joc

Propusa de: prof. Emanuela Cerchez, Colegiul National ,,Emil Racovita” lasi

Pentru a imbunatati aptitudinile logico-matematice ale elevilor sai, profesorul Vasile a implemen-
tat un joc. Pe ecranul principal al jocului se afiseaza un sir de NV scaune, numerotate de la stanga
spre dreapta Incepand cu 1, pe fiecare scaun fiind asezat cate un copil. Fiecare copil poarta un
tricou pe care este scris, de asemenea, cate un numar de la 1 la N. Numerele de pe tricouri sunt
distincte si sunt scrise pe spate, deci nu sunt vizibile.

:
3

|

pa e | ps

Ly b
(SR F o [

Scopul jocului este de a descoperi numarul scris pe tricoul fiecarui copil. Pentru aceasta, pe ecran
mai este afisat un triunghi de numere 7', care ne da informatii ajutatoare. Triunghiul arata ca
o matrice in care liniile sunt numerotate de sus in jos de la 1 la N, iar coloanele de la stanga la
dreapta de la 1 la N. Numarul scris in triunghi pe linia ¢ si coloana j (1 < i < j < n) reprezinta
numarul scaunului pe care sta copilul avand cel mai mic numar pe tricou dintre toti copiii situati
pe scaune cu numere cuprinse intre ¢ si j (inclusiv ¢ si j). Observati ca pozitiile din triunghi de
pe linia ¢ si coloana j cu 1 < j < < N nu sunt completate.

Numim solutie o succesiune de N numere naturale distincte cuprinse intre 1 si N care ar putea fi
scrise, in ordine, de la stanga la dreapta, pe tricourile celor N copii, astfel incat informatiile din
triunghiul de numere sa fie corecte. Doua solutii sunt considerate distincte daca exista cel putin
un copil pentru care numarul scris pe tricoul sau in cele doua solutii difera.

Cerinte
Cunoscand numarul de copii si triunghiul de numere:

1. determinati o solutie posibila; daca exista mai multe solutii posibile se va afisa cea mai mica
din punctul de vedere lexicografic;

113

2. determinati numarul de solutii posibile.

Date de intrare

Fisierul de intrare joc.in contine pe prima linie numarul natural C' reprezentand cerinta care
trebuie sa fie rezolvata (1 sau 2). Pe linia a doua se afla numarul natural N cu semnificatia din
enunt. Pe urmatoarele IV linii se afla numerele din triunghi. Pe linia ¢ dintre cele N sunt scrise
N — i+ 1 numere separate prin cate un spatiu, reprezentand numerele de pe linia ¢ din triunghi,
situate pe coloanele i, 7 +1,...N.

Date de iesire

Fisierul de iesire joc.out contine o singura linie.

Daca C =1 linia contine N numere naturale distincte cuprinse Intre 1 si N, separate prin cate
un spatiu, reprezentand solutia cea mai mica din punct de vedere lexicografic determinata pentru
cerinta 1.

Daca C' = 2 linia contine numarul de solutii posibile determinat pentru cerinta 2.

Restrictii

e« 1< N <1000

e Spunem ca sirul aq, ag, ...ay este mai mic din punctul de vedere lexicografic decat sirul by,
by, ...by daca exista k (1 < k < N), astfel incat a; = b;, pentru orice 1 < i < k si ap < by.

» Se garanteaza ca, pentru datele de test, exista cel putin o solutie.

Puncte Restrictii

1 9 C=1, 1<N<10
2 9 C=2 1<N<10
3
4
5

22 C=1 10< N <1000
24 C=2 10<N <28

36 C =2, fara restrictii suplimentare

joc.in joc.out
213

w N = W w N = W =
N

Explicatie

O solutie posibila este 2 1 3.
Pe secventa de scaune 1..1 copilul cu numar minim pe tricou este pe scaunul 1.

114

Pe secventa de scaune 1..2 copilul cu numar minim pe tricou este pe scaunul 2
Pe secventa de scaune 1..3 copilul cu numar minim pe tricou este pe scaunul 2
Pe secventa de scaune 2..2 copilul cu numar minim pe tricou este pe scaunul 2
Pe secventa de scaune 2..3 copilul cu numar minim pe tricou este pe scaunul 2
Pe secventa de scaune 3..3 copilul cu numar minim pe tricou este pe scaunul 3
O alta solutie posibila este 3 1 2, dar 2 1 3 este mai mica din punct de vedere lexicografic.

9.2 Rezolvarea problemei Joc

Solutia 1. Cerinta 1

Vom retine elementele triunghiului intr-o matrice 7" cu [V linii si N coloane, deasupra diagonalei
principale.

Asezarea elevilor pe scaune reprezinta o permutare de ordin IV, pe care o vom reconstitui intr-un
vector sol cu N elemente, numerotate de la 1 la V. Pentru a reconstitui permutarea minima din
punct de vedere lexicografic:

o T[1][N] reprezinta pozitia elementului minim (adica 1); deci, vom plasa In permutare ele-
mentul 1 pe pozitia T'[1][N].

o In stinga elementului 1 se vor afla T[1][N] — 1 elemente, iar in dreapta sa celelalte N —
T[1][N]; pentru a obtine permutarea minima din punct de vedere lexicografic, vom alege sa
plasam in stanga cele mai mici T[1][N] — 1 elemente, adica valorile 2,3, ..., T[1][V], iar in
dreapta celelalte.

e Am redus astfel problema la rezolvarea a doua subprobleme de acelasi tip, pe care le vom
rezolva recursiv, ele fiind independente.

Putem formula o subproblema la modul general astfel: ,sa se reconstituie secventa din permutarea
sol de la pozitia st, pana la pozitia dr (inclusiv), stiind ca in aceasta secventa se vor plasa valori
distincte cuprinse intre valoarea minim si valoarea mazim”.

Functia reconstituire implementeaza recursiv acest procedeu

Solutia 1. Cerinta 2

Pentru a numara cate modalitati de reconstituire a permutarii exista procedam intr-un mod
similar:

 plasam elementul minim pe pozitia pozmin = T'[st][dr];

e au ramas dr — st elemente din care trebuie sa alegem pozmin — st elemente pentru a fi
plasate pe pozitiile st...pozmin — 1; aceasta se poate face In combinari de dr — st luate
cate pozmin — st moduri (in dreapta fiind automat plasate elementele ramase)

Functia numarare implementeaza acest procedeu.

Se obtine un produs de combinari care trebuie calculat pe numere mari; pentru aceasta vom retine
intr-un vector p descompunerea in factori primi a acestui produs (p[x]=puterea factorului prim x
in produsul combinarilor).

Pentru a calcula rezultatul final este suficient sa Inmultim la rezultat factorii primi la puterea
corespunzatoare, fiind necesara doar o functie de Inmultire a unui numar mare cu un numar mic.

115

Solutia 2 - prof. Adrian Panaete

Pentru a evita abordarea recursiva de mai sus se poate simula recursivitatea utilizand o stiva in
care se vor memora intervalele de care se ocupa fiecare apel recursiv. Observam ca in ambele
cerinte recursivitatea functioneaza in modul urmator

« un apel recursiv se va face pe un interval de indici [st, dr];

« apelul izoleaza o pozitie mi a intervalului [st, dr] pe care o trateaza individual (in moduri
diferite in functie de cerinta)

« se apeleaza functia recursiva pe intervalul [st,mi — 1] (daca acesta nu este vid)

o se apeleaza functia recursiva pe intervalul [mi + 1, dr| (daca acesta nu este vid).

Putem observa ca fiecare procesare se refera la intervale de indici [st,dr] si recursivitatea va
procesa aceste intervale intr-o anumita ordine.

In loc sa folosim o functie recursiva putem folosi o stiva in care sa adaugam si/sau sa eliminam
intervale astfel Incat sa procesam toate intervale din solutia recursiva, iar procesarea sa se realizeze
in aceeasi ordine ca In solutia recursiva.

Pentru a realiza acest lucru se foloseste urmatorul algoritm:

o Adidugam in stiva intervalul [1, n].
o (Cat timp exista elemente in stiva:
— Scoatem intervalul [st, dr| din varful stivei.
— Identificam si procesam pozitia ma.
— Adaugam in stiva intervalul [mi + 1,dr| (daca nu este vid).
— Adaugam in stiva intervalul [st,mi — 1] (daca nu este vid).

In rest, toate detaliile de implementare sunt la fel ca in solutia recursiva.

9.3 Cod-sursa pentru problema Joc

using namespace std;
ifstream fin("joc.in");
ofstream fout("joc.out");
typedef int NrMare[LGMAX];
int n, cerinta;

NrMare rez;

int lgrez;

int TINMAXJ[NMAX];

int sol[NMAX];

int p[NMAX];

void citire();
void reconstituire(int st, int dr, int minim, int maxim);
void combinari(int n, int m);
void numarare(int st, int dr);
void prod(NrMare a, int lga, int x, NrMare p, int& lgp);
void descompunere(int st, int dr, int semn);
int main()
{int i, j;
citire();
if (cerinta==1)
{reconstituire(l,n,1,n);
for (i=1; i<n; i++) fout<<sol[il<<' ';

116

fout<<sol[n]<<'\n';
3
else
{
numarare(1,n);
rez[0]=1; lgrez=1;
for (i=2; i<NMAX; i++)
for (j=0; j<plil; j++)
prod(rez,lgrez,i,rez,lgrez);
for (i=lgrez-1; i>=0; i--) fout<<rez[il;
fout<<'\n"';
3

return 0;

}

void citire()
{int i, j;
fin>>cerinta>>n;
for (i=1; i<=n; i++)
for (j=i; j<=n; j++)
fin>>TLi105];

void reconstituire(int st, int dr, int minim, int maxim)
{int pozmin;
if (st<=dr)
{pozmin=T[st]1[drl;
sol[pozmin]=minim;
reconstituire(st,pozmin-1,minim+1, minim+pozmin-st);
reconstituire(pozmin+1,dr, minim+pozmin-st+1,maxim);

3
}
void numarare(int st, int dr)
{
if (st<dr)
{
int pozmin=T[st][dr];
combinari(dr-st,pozmin-st);
numarare(st,pozmin-1);
numarare(pozmin+1,dr);
}
}

void combinari(int n, int m)
{
if (m>0 && m<n)
{descompunere(n-m+1,n,1);
descompunere(2,m,-1);

b

void descompunere(int st, int dr, int semn)
{int k, d, x;
for (k=st; k<=dr; k++)

{d=2; x=k;

while (dxd<=x)

{
while (x%d==0)
{p[d]+=semn;

117

x/=d;}
d++;
3
if (x>1) p[x]+=semn;
3
}

void prod(NrMare a, int lga, int x, NrMare p, int& lgp)
{int t = 0, val, 1i;
for (i=0; i<lga; i++)

{
val = a[i] *» x + t;
pli]l = val %10;
t =val / 10;
3
lgp = lga;
while (t)
{
pllgpl = t%10;
lgp++;
t =t/10;
}

118

9.4 Problema Succes

Propusa de: stud. Alin Raileanu, Facultatea de Informatica, Universitatea ,Alexandru Ioan
Cuza” lasi

Se considera sirul § = 51, S3,... Sy format din N multimi de numere naturale cuprinse intre 1
si M. De asemenea, se considera doua siruri de cate M numere Intregi A = Ay, Ay, ... Ay si
B = By, B,,...By.

Numim secventa de multimi (¢, j) (1 <i < j < N) succesiunea de multimi S;, Siy1,...95;.

Pentru o secventa de multimi (7, j) (1 < i < j < N), se determina factorul de succes pe baza
sirului A, respectiv factorul de insucces, pe baza sirului B in modul urmator:

1. se efectueaza reuniunea multimilor din secventa de multimi (4, j);

2. factorul de succes al secventei de multimi (4, j) este suma valorilor din sirul A situate pe
pozitiile date de elementele reuniunii;

3. factorul de insucces al secventei de multimi (7, j) este suma valorilor din sirul B situate
pe pozitiile date de elementele reuniunii.

O secventa (i,7) (1 <i < j < N) este castigatoare daca indeplineste urmatoarele conditii:

1. factorul de insucces al secventei este cel mult egal cu un numar natural K dat;
2. factorul de succes al secventei este cel mai mare dintre factorii de succes corespunzatori
tuturor secventelor ce respecta conditia 1.

Cerinte

Determinati factorul de succes al unei secvente castigatoare.

Date de intrare

Fisierul de intrare succes. in contine pe prima linie numerele naturale N, M, K. Pe a doua linie
din fisier se gasesc M numere Intregi, reprezentand elementele sirului A. Pe a treia linie din fisier
se gasesc M numere Intregi, reprezentand elementele sirului B. Pe ultimele N linii sunt descrise
cele N multimi din sirul S, cate o multime pe o linie. O linie care descrie o multime contine
nr, numarul de elemente din multime, urmat de cele nr elemente ale multimii. Valorile scrise pe
aceeasi linie sunt separate prin cate un spatiu.

Date de iesire

Fisierul de iesire succes.out contine o singura linie pe care este scris factorul de succes al unei
secvente castigatoare.

Restrictii

« 1 <N <200000

e 1 <M <100

Numarul total de elemente din cele N multimi este < 1000000
0 < K,|A;|,|B;| < 1000000000, pentru 1 <i < M

Se garanteaza ca exista cel putin o secventa castigatoare.

119

Puncte Restrictii

#
1 15 1< N <100
2
3
4

20 100 < N <1000

21 Numerele din sirurile A si B sunt pozitive.

44 Fara restrictii suplimentare

Exemple
succes. in succes.out Explicatii
433 5 N=4 M =3, K =3.
32-2 O secventa castigatoare este (2, 3).
; 12 12 3 Reuniunea multimilor pentru secventa
510 (2,3) este {1,2}U{1}={1,2}.
11 Factorul de insucces pentru secventa (2, 3)
232 este B+ B,=142=3<K.

Factorul de succes pentru secventa (2, 3)
este Ay + Ay = 3+ 2 =5, valoare maxima
pentru toate secventele pentru care
factorul de insucces este < K.

9.5 Rezolvarea problemei Succes

Pentru inceput, vom defini functiile:

« sc(i,) - factorul de succes al secventei delimitate de indicii ¢ si j

e insc(i,j) - factorul de insucces al secventei delimitate de indicii 7 si j

e Uf(i,j) - multimea obtinuta prin reuniunea multimilor din secventa delimitata de indicii ¢
sl j.

Subtask 1 -1 < N <100 - 12 puncte

Se vor testa toate secventele sirului de multimi prin selectarea In maniera bruta a celor doua
capete i si j (1 <¢ < j < N), iar apoi prin calcularea celor 2 valori sc(i,) si insc(, j).

Cei doi factori pot fi calculati in complexitate timp O(N x M), iar selectarea tuturor secventelor
in O(N?).

Complexitatea finald va fi O(N3 x M).

Subtask 2 - 100 < N <1000 - 13 puncte

Similar primului subtask, se vor testa toate secventele sirului de multimi prin selectarea in maniera
bruta a celor doua capete i si j (1 <i < j < N), iar cei 2 factori se pot actualiza in O(M) la
fiecare schimbare de capat dreapta.

Complexitatea finald va fi O(N? x M).

Subtask 3 - Numerele din A si B sunt pozitive - 20 puncte

Pentru acest caz, sc si insc vor fi crescatoare pentru un capat stanga setat (1).

120

Totodata, faptul ca cele 2 siruri au doar numere pozitive garanteaza ca insc(i, j) < insc(i+1, j).
Deci, daca insc(i, j) < K, atunci si insc(i + 1, 5) < K (2).

Din (1) si (2) rezulta ca putem aplica tehnica ,,Two Pointers” pentru acest caz, optimizand
solutia de la subtask-ul 2.

Complexitatea finald va fi O(N x M).

Subtask 4 - Restrictii initiale - 55 puncte
Spre deosebire de subtask-ul precedent, functiile sc si insc nu mai sunt monotone.

Totusi, functia U este monotona pentru un capat stanga setat, intrucat operatia de reuniune este
monotona (1).

Cum cardinalul maxim al unei multimi este M si (1), rezulta ca functia U va avea cel mult M
schimbari de rezultat pentru un capat stanga setat.

Cum functiile sc si insc isi schimba rezultatul doar atunci cand si functia U isi schimba rezultatul,
o buna optimizare pentru solutia de la subtask-ul 2 este sa parcurgem pentru un capat stanga
setat doar capetele dreapta care aduc o schimbare de rezultat pentru functia U.

Putem observa ca pentru un indice ¢, functia U(7,j) isi modifica rezultatul doar atunci cand
multimea de la pozitia j contine un element care nu se gaseste in niciuna dintre multimile de la
ilaj—1.

Astfel, putem parcurge multimile de la N la 1 si sa retinem tabloul last cu semnificatia: last[z] =

Ju<j<n), J este cel mai mic indice al unei multimi parcurse care contine elementul x

N +1, daca nu exista un astfel de indice.

In continuare, la fiecare iteratie vom actualiza valorile din last, apoi vom parcurge numerele de
la 1 la M in ordinea crescatoare a valorilor din last si vom testa rezultatele sc si insc, avand in
vedere doar starile valide.

Pentru parcurgerea in ordinea dorita, valorile pot fi sortate sau se poate utiliza urmatorul , trick”:

« punem la inceput In sortare toate valorile care nu se gasesc in multimea de la indicele curent,
in ordinea in care se gaseau in sortarea finala de la indicele precedent
« punem la final In sortare elementele multimii de la indicele curent.

Pentru solutia cu sortare, complexitatea timp va fi O(N x M X log(M)), iar in urma optimizarii,
complexitatea obtinuta va fi O(N x M).

Mai exista si solutii O(N x M x log(N)) bazate pe precalculari si cautare binara pe rezultat.

9.6 Cod-sursa pentru problema Succes

const int MMAX=105;

using namespace std;
ifstream cin(R
ofstream cout(R

int a[MMAX]1, b[MMAX], poz[MMAX];
int ev[MMAX];

121

int n, m, k;

signed main()
{
int i, j, lg, elem, suma, sumb, ans=-1e18;
cin>>n>>m>>k;
for(i=1; i<=m; i++) cin>>alil;
for(i=1; i<=m; i++) cin>>b[i];
for(i=1; i<=m; i++) ev[il=i;
for(i=1; i<=n; i++)
{
cin>>1g;
for(j=1; j<=lg; j++)
{
cin>>elem;
pozlelem]=i;
}
int st=1, dr=m;
for(j=1; j<=m; j++)
{
if(pozlev[jl]l!=i)
{
ev[st++]=ev[jl;
3
3
for(j=1; j<=m; j++)
{
if(poz[jl==i)
{
evldr--]=j;
}
3
sumb=suma=0;
for(j=m; j>=1; j--)
{
if(!pozlev[jl]l) break;
sumb+=b[ev[j]];
suma+=alev[j1];
if(sumb<=k && pozl[ev[jll!=poz[ev[j-111) ans=max(ans, suma);

}

cout<<ans<< :
return 0;

122

9.7 Problema Vnoroc

Propusa de: stud. Victor Botnaru, Facultatea de Automatica si Calculatoare, Universitatea
Nationala de Stiinta si Tehnologie POLITEHNICA Bucuresti

Pentru avea succes la Olimpiada de Jocuri pe Internet (OJI), VasilicaA a cumparat de la Baba
Yaga un talisman norocos. Talismanul norocos este un sir care indeplineste urmatoarele doua
conditii:

« toate elementele sirului sunt cifre mai mici sau egale cu magicul 7;
« oricare doua elemente aflate pe pozitii consecutive In sir au cel putin un divizor comun strict
mai mare decat 1.

De exemplu, (7, 7, 7), (6, 0, 0, 4, 0) si (2, 6, 3) sunt talismane norocoase, dar (1, 2, 3), (2, 4, 7)
si (5, 6, 5) nu sunt.

Cel mai mare rival al lui Vasilica, pe nume Acilisav, a aflat de planul lui de a folosi magie pentru
a castiga competitia de jocuri si s-a furisat in noaptea de dinainte de OJI in casa lui Vasilica si
i-a modificat talismanul, adaugand cifre mai mici sau egale cu 7.

Vasilica vrea sa elimine cifre din sir, astfel Incat sirul sa redevina un talisman norocos.

Cerinte
Cunoscand sirul V' modificat de Acilisav:

1. determinati numarul minim de cifre care trebuie sa fie eliminate din sirul V, astfel incat
acesta sa devina talisman norocos;

2. determinati talismanul norocos minim lexicografic, care se obtine eliminand din sirul V' un
numar minim de cifre.

Date de intrare

Fisierul de intrare vnoroc.in contine pe prima linie numerele naturale C' si N, reprezentand
cerinta care trebuie sa fie rezolvata (1 sau 2), respectiv numarul de elemente din sirul V. Pe a
doua linie se afla N cifre separate prin cate un spatiu, reprezentand elementele sirului V.

Date de iesire
Fisierul de iesire vnoroc.out contine o singura linie, pe care este scris:

o daca C' = 1, un numar natural nr, reprezentand numarul minim determinat pentru cerinta
L

o daca C' =2, (N — nr) cifre separate prin cate un spatiu, reprezentand talismanul norocos
minim lexicografic, determinat pentru cerinta 2.

Restrictii
¢« 2< N <108
« Cifrele din sirul V' sunt mai mici sau egale cu 7.
o Spunem ca sirul a1, ag, ...ayx este mai mic strict din punctul de vedere lexicografic decat
sirul by, by, ...by daca exista k (1 < k < N), astfel Incat a; = b;, pentru orice 1 < i < k si
ay < by.

123

Puncte Restrictii
1 6 C =1, toate cifrele sunt prime
2 12 C=1,1<N<L100
3 12 C =1,100 < N <1000
4 14 C'=1,1000 < N < 10°
5 6 C = 2, toate cifrele sunt prime
6 16 C=21<N<100
7 16 C =2,100 < N <1000
8 18 C =2,1000 < N < 10°
Exemple
vnoroc. in vnoroc.out Explicatii
15 1 Pentru ca sirul sa devina norocos, este
44362 suficient sa eliminam cifra 3.
25 4462 Singura solutie care se poate obtine
44362 elimindnd un numar minim de cifre (1)
este 44 6 2.
26 555 Numarul minim de cifre care trebuie sa fie
575757 eliminate este 3. Se pot obtine doua
talismane norocoase prin eliminarea a cate
3 cifre: (5, 5, 5) si (7,7, 7). Se afiseaza
talismanul norocos minim lexicografic 5 5
5.
29 33005 Numarul minim de cifre care trebuie sa fie
235370051 eliminate este 4. Se poate obtine un singur
talisman norocos (3, 3, 0, 0, 5) prin
eliminarea a 4 cifre.

9.8 Rezolvarea problemei Vnoroc

Solutia 1
Observatii initiale:

e Numarul 1 este singurul numar natural care nu are divizori mai mari decat 1, prin urmare
toate valorile egale cu 1 vor fi eliminate din sir de la Inceput (si contorizate ca elemente
eliminate).

o Numarul 0 este singurul numar natural care este divizibil cu orice alt numar natural nenul.
Vom partitiona sirul dat in secvente de valori care nu contin zerouri si vom rezolva problema
pentru aceste secvente, zerourile fiind ,punti de legatura” intre solutiile obtinute pentru
aceste secvente (utilizdnd zerourile vom putea concatena aceste solutii, inserdnd zerourile
pe pozitiile corespunzatoare).

Vom analiza In continuare secvente de valori > 1.
« Daca secventa contine doar cifrele 2, 3, 5, 7 (cifre prime), oricare doua elemente diferite nu

au divizori comuni diferiti de 1. Numaram cate cifre de 2, 3, 5 respectiv 7 avem in sirul

124

initial. Solutia va fi alcatuita din cifra care apare de cele mai multe ori. In caz de egalitate,
luam cifra cea mai mica, pentru a face sirul minim lexicografic.

o Daca secventa contine doar cifrele 2, 3, 4, 5, 7, solutia problemei nu se schimba mult,
deoarece 4 poate fi asimilat cu 2, in ceea ce priveste divizorii. Daca dorim sa reconstituim
solutia minim lexicografica, trebuie sa adaugam inca o verificare. In cazul in care pentru o
secventa data, numarul maxim de aparitii este detinut de cifrele 3 la egalitate cu numarul
de aparitii ale cifrelor 2 sau 4, atunci trebuie sa verificam daca primul element par este 2
sau 4: daca este 2, vom alege sa utilizam cifrele 2 si 4; daca primul element este 4, este
preferabil sa alegem cifrele egale cu 3.

« Daca secventa contine toate cifrele > 1, observam ca cifra 6 este din nou o cifra speciala,
fiind o punte de legatura intre secvente de cifre egale cu 3 si secvente de cifre 2 sau 4. Pentru
5 si 7 vom contoriza numarul de aparitii. Pentru 2, 3, 4, vom partitiona din nou secventa
in subsecvente delimitate de cifra 6, vom rezolva problema pentru fiecare subsecventa si
vom concatena solutiile inserand cifrele egale cu 6 pe pozitiile corespunzatoare. La final
vom alege, evident, varianta pentru care numarul de aparitii este maxim, dar, din nou, la
reconstituirea solutiei minime din punct de vedere lexicografic trebuie sa verificam daca
numarul maxim de aparitii se obtine pentru cifra 5 la egalitate cu solutia obtinuta pentru
cifrele 2, 3, 4, 6. Vom verifica daca prima valoare care apare in solutia cu 2, 3, 4, 6 este
egala cu 6 (caz in care va fi preferabil sa folosim cifrele 5, in solutia minim lexicografica).

Solutia 2

Rezolvam problema prin metoda programarii dinamice. Formulam o subproblema astfel: ,sa se
determine lungimea celui mai lung subsir care Incepe la o pozitie mai mare sau egala cu i si are
proprietatea de a fi talisman noros (1 <i < N)”.

Vom retine lungimile in vectorul d[], d[i]= lungimea celui mai lung subsir care incepe la pozitia i
si are proprietatea de a fi talisman noros (1 <1i < N).

In vectorul next[], vom retine informatii pentru reconstituirea solutiei, next[i| = pozitia elemen-
tului care urmeaza dupa elementul de pe pozitia ¢, In cel mai lung subsir cu proprietatea de a fi
talisman norocos minim lexicografic (sau 0 daca nu exista un astfel de element).

Rezolvam subproblemele in ordinea descrescatoare a dimensiunii acestora, parcurgand vectorul
de la N catre 1.

Pentru a calcula cel mai lung subsir cu proprietatea de a fi talisman norocos care incepe la pozitia
i, Incercam sa adaugam valoarea v[i] unui subsir maximal de la dreapta acestuia; pentru ca acest
lucru sa fie posibil, v[i] trebuie sa aiba un divizor comun > 1 cu elementul de inceput al subsirului.
Cu alte cuvinte, pentru orice j > i, cu (v[i], v[j]) avind un divizor comun > 1:

d[i] = max(d[i],d[j] + 1);

In caz de egalitate, tinem minte in next[i] cea mai mica valoare urmitoare pentru care subsirul
construit cu aceasta sa fie maximal. Vom folosi vectorul next pentru a reconstrui solutia minima
lexicografica la final. Dupa finalizarea dinamicii, este suficient sa Incepem de la pozitia ¢ pentru
care d[i] e maxim si v[i] e minim, s& iteram dupa regula i = next[i], si sa afisam cifrele de pe
toate pozitiile parcurse.

Solutia descrisd mai sus are complexitatea O(N?), dar poate fi optimizata folosind urmétoarea
observatie: este suficient pentru fiecare cifra de la 0 la 7 sa ne uitam doar la cea mai din stanga
pozitie pe care aceasta apare, pentru a gasi subsirul maximal care Incepe cu valoarea respectiva.

E usor de vazut ca acest fapt este adevarat, deoarece, pentru doud pozitii a si b, cu a < b si
v[a] = v[b], subsirul maximal care incepe in @ are lungimea cel putin egala cu cea a subsirului

125

maximal care incepe in b, plus 1.
Putem construi vectorul auxiliar last pos:
last _pos|c] = ultima pozitie gasita in iteratie a cifrei c.

Astfel, dinamica devine: d[i] = maxz(d[i], d[last pos[c]]+1), pentru fiecare ¢ Intre 0 si 7 cu (v]i], ¢)
avand un divizor comun >1;

La final, last_pos[v[i]] = i.

Acum, in loc sa facem N iteratii pentru fiecare 7, vom face maxim 8. Complexitatea finala este
O(N).

9.9 Cod-sursa pentru problema Vnoroc

using namespace std;
ifstream in();
ofstream out(R

const int maxn = 1000005;
int c¢,n,vlmaxn];

int solve_two_four_three(int st, int dr)
{ int two_count = 0, three_count = 0;
bool starts_with_four = 0;
for (int i = st; i <= dr; i++)

{
if (v[i]l % 2 == 0)
{
two_count++;
if (two_count == 1 && v[i] == 4)
starts_with_four = 1;
}
if (v[il % 3 == 0) three_count++;
3
if (three_count > two_count || (three_count == two_count && starts_with_four))
{
for (int i = st; i <= dr; i++)
{
if (v[il % 2 == 0)
vli] = -1;
}
return three_count;
3
for (int i = st; i <= dr; i++)
{
if (v[il % 3 == 0)
v[i] = -1;
3

return two_count;

126

int

{

int

solve_non_zero(int st, int dr)

int five_count = 0, seven_count = 0;
int last_six_position = st - 1;

int six_solution_size = 0;

bool starts_with_six = 0;

for (int i = st; i <= dr; i++)

{
if (v[i] == 5) five_count++;
if (v[i] == 7) seven_count++;
if (v[i] == 6)
{
six_solution_size += 1 + solve_two_four_three(last_six_position+1, i-1);
last_six_position = i;
if (six_solution_size == 1) starts_with_six = 1;
3
3

six_solution_size += solve_two_four_three(last_six_position+1, dr);
if (seven_count > five_count && seven_count > six_solution_size)

{

for (int i = st; i <= dr; i++)
if (v[il '=7) vlil = -1;
return seven_count;

if (five_count >= seven_count && five_count > six_solution_size ||

(five_count == six_solution_size && starts_with_six))
{
for (int i=st; i<=dr; i++)
if (v[il!=5) v[il=-1;
return five_count;
}

for (int i=st; i<=dr; i++)
if (v[il==7||vlil==5) v[il=-1;
return six_solution_size;

main()
in>>c>>n;
int solution_size=0;

int last_zero_position=0;

for (int i=1; i<=n; i++)

{
in>>v[il;
if(v[i]==0)
{
solution_size+=1+solve_non_zero(last_zero_position+1, i-1);
last_zero_position=i;
}
3

solution_size+=solve_non_zero(last_zero_position+1, n);

if(c==1)

127

out<<n-solution_size<<'\n';
return 0;
}
for (int i=1; i<=n; i++)
if (v[il!=18&v[i]!=-1) out<<v[i]<<' ';
out<<'\n';
return 0;

using namespace std;
ifstream f("vnoroc.in");
ofstream g("vnoroc.out");
const int N = 1000010,
vector<int> v[10];
int n,m,p,cer,x[N],nxt[N],1g[10],po[10];
int main()
{
for(int i=0;i<=9;i++)
for(int j=9;3j>=0;j--)
if(__ged(i,j)!=1)
v[i].push_back(j);
f>>cer>>n;
for(int i=1;i<=n;i++)
>>x[i];
for(int i=n;i>=1;i--)
if(x[il!=1)
{
int a,b;
a=x[i];b=0;
for(auto c:v[al)
if(lglcl>=1glbl)
b=c;
nxt[i]=1g[b]?polb]l:n+1;
1glal=1g[b1?1g[bl+1:1;
polal=i;
3
for(int i=0;i<=9;i++)
m=max(m,1g[i]);
if(cer==1)
{
g<<n-m<<'\n';
return 0;
}
for(int i=9;i>=0;i--)if(1glil==m)p=pol[il;
for(;p<=n;p=nxt[pl)g<<x[pl<<’ ';
g<<'\n';
return 0;

128

Partea a I11-a

Tabara de pregatire a lotului national
de informatica juniori

Craiova, 9-14 mai 2025

129

Capitolul 10

Barajul 1

10.1 Problema Retete

Propusa de: prof. Emanuela Cerchez, Colegiul National ,,Emil Racovita” lasi
stud. Andrei Boaca, Facultatea de Informatica, Universitatea ,Al. 1. Cuza” lasi

De cand am descoperit Chat GPT 1l folosesc la orice, inclusiv in bucatarie. De exemplu, astazi
am facut un inventar al ingredientelor pe care le am in casa sub forma unei liste, in care fiecare
linie corespunde unui ingredient sub forma:

denumire_ingredient cantitate unitate_de_masura

Unitatea de masura poate fi litrul (indicat prin 1), decilitrul (indicat prin d1; 11=10d1), centilitrul
(indicat prin cl; 11=100cl) mililitrul (indicat prin ml; 11=1000ml), gramul (indicat prin g),
kilogramul (indicat prin kg; 1kg=1000g) sau bucata (indicata prin b). Cantitatea si denumirea
ingredientului, respectiv cantitatea si unitatea de masura sunt separate prin cate un spatiu.

Apoi i-am dat lui Chat GPT retetele mele de prajituri preferate, fiecare reteta in urmatorul
format:

#nr
descriere lista ingrediente

Retetele sunt numerotate incepand cu 1, in ordinea in care sunt scrise (numarul retetei fiind
specificat dupa caracterul #). Descrierea listei de ingrediente este In acelasi format cu inventarul
ingredientelor pe care le am 1n casa. Nefiind interesant pentru Chat GPT, am omis descrierea
modului de preparare. I-am cerut lui Chat GPT sa-mi raspunda la doua intrebari:

1. Daca as dori sa prepar prédjitura dintr-o singura reteta, care sunt retetele de prajituri pe
care le-as putea prepara cu ingredientele pe care le am in casa?

2. Daca as dori sa prepar mai multe prajituri, care este numarul maxim de retete de prajituri
pe care le-as putea prepara cu ingredientele din inventar, precum si toate combinatiile cu
numar maxim de retete de prajituri ce as putea sa le prepar.

Chat GPT nu s-a prea descurcat, prin urmare scrieti voi un program care sa raspunda la intrebari.

Cerinte
Date fiind lista cu inventarul ingredientelor pe care le am In casa, precum si retetele de prajituri:

1. determinati numerele de ordine ale retetelor ce pot fi preparate cu ingredientele din inventar;

131

2. determinati numarul maxim de retete distincte de prajituri care pot fi preparate cu ingre-
dientele din inventar, precum si toate combinatiile cu numar maxim de retete.

Date de intrare

Fisierul de intrare retete.in contine pe prima linie numarul natural C' reprezentand cerinta care
trebuie s fie rezolvata (1 sau 2). Pe urmatoarele linii este scris inventarul ingredientelor, cite un
ingredient pe o linie, in formatul descris In enunt. In continuare, pana la sfarsitul fisierului sunt
scrise retetele, In formatul din enunt. Pe ultima linie a fisierului de intrare se afla caracterul *.

Date de iesire

Daca cerinta C' = 1, fisierul de iesire retete.out contine o singura linie, pe care sunt scrise
in ordine crescatoare, separate prin cite un spatiu, numerele retetelor care pot fi preparate cu
ingredientele din inventar. Daca cerinta C' = 2, fisierul de iesire retete.out contine pe prima
linie numarul maxim de retete care pot fi preparate cu ingredientele din inventar. Pe urmatoarele
linii sunt scrise in ordine lexicografica combinatiile cu numar maxim de retete care pot fi preparate
cu ingredientele din inventar, fiecare combinatie pe o linie. O combinatie este o succesiune de
numere de retete, in ordine strict crescatoare, separate prin cate un spatiu.

Restrictii

« In inventar exista cel mult 10000 de ingrediente distincte.

o In fisierul de intrare existd cel mult 100 de retete, fiecare retetd avand cel mult 100 de
ingrediente, nu neaparat distincte.

 Denumirea unui ingredient are cel mult 30 de caractere (litere mici, cifre, spatiu sau procent).

« Cantitatile sunt numere naturale nenule < 10000.

e Daca C = 2, cu ingredientele din inventar pot fi preparate, individual, cel mult 18 retete.

o Un ingredient poate avea unitatea de masura doar din una dintre urmatoarele 3 categorii:
unitate de masa (kg, g), unitate de volum (1, d1, c1, ml) sau bucata (b).

« Combinatia de retete a;, ag, ...an preceda in ordine lexicografica combinatia de retete by,
by, ...by daca exista k (1 < k < N), astfel incat a; = b;, pentru orice 1 < i < k si ap < by.

Puncte Restrictii
1 30 =1
70 C=2

[\

132

Exemple

retete.in

retete.out

1

unt 82% 500 g
ulei de floarea
faina 000 4 kg
smantana 500 g
zahar 1500 g
zahar pudra 200
rahat 500 g
cacao 450 g

rom 2 dl

nuca 2 kg

unt 60% 800 g
vanilie 10 g
zahar vanilat 5
ou 30 b

#1

nuca 100 g
ou2b

zahar pudra 100
unt 82% 220 g
faina 000 300 g
oulhb

zahar vanilat 1
vanilie 1 g

#2

biscuit 500 g
unt 60% 200 g
rahat 150 g
nuca 150 g
zahar 100 g
cacao 60 g
lapte 200 ml

#3

unt 82% 250 g
smantana 250 g
faina 000 750 g
rahat 400 g

#4

unt 82% 100 g
faina 000 300 g

zahar 100 g
*

soarelui 5 1

1

3

4

133

2

unt 82% 500 g
ulei de floarea soarelui 51
faina 000 4 kg
smantana 500 g
zahar 1500 g
zahar pudra 200 g
rahat 500 g

cacao 450 g

rom 2 dl

nuca 2 kg

unt 60% 800 g
zahar vanilat 5 b
ou 30 b

#1

nuca 100 g

ou2b

zahar pudra 100 g
unt 82% 220 g
faina 000 300 g
oulhb

zahar vanilat 1 b
#2

biscuit 500 g

unt 60% 200 g
rahat 150 g

nuca 150 g

zahar 100 g

cacao 60 g

lapte 200 ml

#3

unt 82% 250 g
smantana 250 g
faina 000 750 g
rahat 400 g

#4

unt 82% 100 g
faina 000 300 g

zahar 100 g
*

w = =N
A DA ow

Explicatii

Doar retetele 1, 3 si 4 pot fi preparate cu ingredientele din inventar (deoarece pentru reteta 2 este
necesar sa avem lapte si biscuiti, care nu exista in inventar).

Maximum 2 retete am putea prepara cu ingredientele din inventar, acestea fiind 1 si 3, sau 1 si 4
sau 3 si 4.

10.2 Rezolvarea problemei Retete

Vom citi linie cu linie ingredientele din inventar. Pentru a extrage ingredientele, o solutie simpla
este de a parcurge sirul de la final spre inceput:

« cautam ultimul spatiu (acesta delimiteaza unitatea de masura); pentru a nu avea probleme
cu cantitati exprimate In unitati de masura diferite, convertim 1, dl, cl in ml, iar kg in g;

« cautam urmatorul spatiu, acesta delimiteaza cantitatea;

o restul sirului reprezinta denumirea produsului.

134

Ingredientele din lista-inventar le vom memora intr-o structura de date, impreuna cu cantitatile
in care sunt disponibile. Structura de date pe care o utilizati pentru memorarea ingredientelor
influenteaza eficienta implementarii.

Cerinta 1

Vom citi succesiv retetele si pentru fiecare reteta verificam daca toate ingredientele specificate in
reteta respectiva apar in inventar intr-o cantitate suficient de mare.

Cerinta 2

Vom nota cu P numarul de retete care pot fi preparate individual. Pentru cerinta 2 se garanteaza
ca exista cel mult 18 retete care pot fi preparate individual (P < 18). Prin urmare, vor exista cel
mult CJy = 48 620 combinatii fezabile.

Aceasta observatie ne sugereaza ca este o simpla problema de generare de elemente combinatoriale,
care poate fi abordata in diferite moduri. In functie de modul de abordare si de implementare
pot fi obtinute diferite punctaje.

Solutia 1. Generare submultimi

Se genereaza toate submultimile de retete si pentru fiecare submultime se verifica daca este
fezabila (adica daca toate ingredientele care apar in retetele respective exista in inventar, iar suma
cantitatilor necesare pentru fiecare ingredient este mai mica sau egala cu cantitatea disponibila).

Aceastd solutie are complexitate O(27- P-I), unde I este numéarul maxim de ingrediente din fiecare
retetd (I < 100), datorita faptului ca pentru fiecare submultime generata trebuie sa verificam daca
suma cantitatilor ingredientelor care apar in submultime este disponibila.

Solutia 2. Generare combinari

Se genereaza combinari (submultimi de K retete dintre cele P care pot fi preparate), in ordine
descrescatoare dupa K) si se verifica, n acelasi mod, pentru fiecare combinare daca este fezabila.
La primul K pentru care exista solutii fezabile ne oprim, Intrucat acestea sunt combinatii cu
numar maxim de retete. Aceasta abordare este mai eficienta decat prima, dar nu obtine 100 de
puncte.

Solutia 3. Generare cod Gray

Pentru inceput vom ,normaliza” sirurile de caractere, asociind fiecaruia cate un numar, pentru a
putea scapa de un eventual factor de log in implementarea ideii de mai jos. Normalizarea o vom
face folosind un std: :map<std::string , int> asociind fiecarui sir de caractere (tinut in memorie pe
tipul de date std::string) neintalnit pana la momentul curent un nou numar.

Vom genera submultimile de retete sub forma de masti pe biti in ordinea codului Gray. Codul
Gray(K) (codul Gray pe K biti) se obtine in felul urmator:

1. Gray(1) este 0,1.

2. Gray(K) pentru K > 1 se obtine din Gray(K — 1) completand codul Gray(K — 1) cu
un bit cu valoarea 0, apoi concatenand cele 251 solutii cu oglindirea codului Gray(K-1)
completata cu un bit cu valoarea 1.

135

https://en.wikipedia.org/wiki/Gray_code

De exemplu, Gray(2) poate fi:
00
01
11
10

Gray(3) poate fi:
000
001
011
010
110
111
101
100

Codul Gray poate fi calculat si direct cu formula x * (x >> 1).

Avantajul folosirii acestui mod de generare a submultimilor este dat de faptul ca valorile de la
doua pozitii vecine difera prin exact un bit, motiv pentru care va trebui sa actualizam suma
cantitatilor ingredientelor din retetele submultimii curente doar pentru reteta care apare/dispare
din submultimea de la pasul anterior. Obtinem astfel o complexitate O(2F-I), care este suficient
pentru punctajul maxim.

Solutia 4. Backtracking optimizat

O abordare de tip backtracking optimizat pentru generarea solutiilor poate obtine, de asemenea,
punctaj maxim.

10.3 Cod-sursa pentru problema Retete

using namespace std;
ofstream fout("retete.out");
int cerinta;
struct date
{

int nume;

int c;
1
vector<string> nrm;
int nrcrt;
int f[50005], f2[50005];
vector<date> retetal[105];
int getnr(string x, string y)
{ int nr = 0;

for (char ¢ : xX) nr = nr x 10 + ¢c - '0';
if (y = "1" || y = "kg") nr = nr x 1000;
if (y == "dl") nr =nr x 100;

if (y == "cl") nr =nr % 10;

return nr;

b

int getnorm(string s)

136

https://en.wikipedia.org/wiki/Gray_code#Converting_to_and_from_Gray_code

int st = 0, dr = nrm.size();
dr--;
while (st <= dr)
{
int mij = (st + dr) / 2;
if (nrm[mij] == s)
return mij + 1;
if (nrm[mij] < s)
st =mij + 1;
else
dr = mij - 1;
3
return -1;
3
date parse(string s)
{
string unit, num;
while (s.back() !=)
{
unit.push_back(s.back());
s.pop_back();
}
s.pop_back();
while (s.back() !=)
{
num.push_back(s.back());
s.pop_back();
3
s.pop_back();
reverse(unit.begin(), unit.end());
reverse(num.begin(), num.end());
int nr = getnr(num, unit);
return { getnorm(s),nr };
}
void initparse(string s)
{
string unit, num;
while (s.back() !=)
{
unit.push_back(s.back());
s.pop_back();
}
s.pop_back();
while (s.back() !=)
{
num.push_back(s.back());
s.pop_back();
}
s.pop_back();
reverse(unit.begin(), unit.end());
reverse(num.begin(), num.end());
nrm.push_back(s);
}

vector<int> good;

int lgmax, lg;
vector<int> me;
vector<vector<int>> sol;

vector<int> gray(int 1g)

137

}

if (g == 1) return { 0,1 };

vector<int> rez = gray(lg - 1);

vector<int> aux = rez;

for (int i = 0;1i < aux.size();it++)
aux[i] += (1 << (1g - 1));

reverse(aux.begin(), aux.end());

for (int i : aux) rez.push_back(i);

return rez;

bool bysize(int a, int b)

{

3

return retetalal.size() < retetalb].size();

string ss;
ifstream fin2();

int

{

138

main()

fin2 >> cerinta; fin2.get();

while ()
{
getline(fin2, ss);
if (ss[0] ==) break;
if (ss[o] != && ss[0] !=)
initparse(ss);
3
fin2.close();
ifstream fin(g

sort(nrm.begin(), nrm.end());
vector<string> aux;
for (string ss : nrm)
if (aux.empty() || aux.back() != ss)
aux.push_back(ss);
nrm = aux;
fin >> cerinta; fin.get();
string curent;

while ()
{
getline(fin, curent);
if (curent[0] ==) break;
else
{

date x = parse(curent);
flx.nume] += x.c;
}
3
int ind = 1;
vector<int> names;

while ()

{
getline(fin, curent);
if (curent[0] == || curent[0] ==
{

vector<date> v;

for (int i : names)

{
v.push_back({ i,f2[i]l });
f2[i] = 0;

}

names.clear();

retetalind] = v;

)

if (curent[0] ==) break;
ind++;
continue;
3
date x = parse(curent);
if (f2[x.nume] == 0)
names.push_back(x.nume);
f2[x.nume] += x.c;

3
for (int i = 1;1i <= ind;i++)
{
bool ok = 1;
for (date x : retetalil)
ok &= (f[x.nume] >= x.c);
if (ok)
good.push_back(i);
}
if (cerinta == 1)
{
for (int i : good) fout << i << :
return 0;
}

lg = good.size();
sort(good.begin(), good.end(), bysize);
int lgmax = 0;
vector<int> masks = gray(lg);
int negative = 0;
for (int z = 1;z < masks.size();z++)
{
vector<int> vec;
int mask = masks[z];
int prv = masks[z - 1];
int where = (mask * prv);
int semn = 1;
if (mask < prv)
semn = -1;
for (int bit = 0;bit < lg;bit++)
{
if ((where >> bit) & 1)
for (date me : retetal[good[bit]])

{
if (flme.nume] < 0)
negative--;
flme.nume] -= me.c * semn;
if (flme.nume] < 0)
negative++;
}

if ((mask >> bit) & 1)
vec.push_back(good[bit]);
}
if (negative > 0) continue;
if (vec.size() > lgmax)

{
lgmax = vec.size();
sol.clear();
sol.push_back(vec);

3

else if (vec.size() == lgmax)

sol.push_back(vec);

3

for (int 1 = 0;1i < sol.size();i++)

139

sort(sol[i].begin(), soll[il.end());
sort(sol.begin(), sol.end());
fout << lgmax << '\n';
for (auto i : sol)

{
for (auto j : i) fout << j << ' '
fout << '\n';

3

return 0;

using namespace std;
ifstream fin("retete.in");
ofstream fout("retete.out");
mt19937 rng(chrono::steady_clock().now().time_since_epoch().count());
int cerinta;
struct date
{
int nume;
int c;
1
map<string,int> nrm;
int nrcrt;
int f[50005],f2[50005];
vector<date> retetal[105];
int getnr(string x,string y)
{
int nr=0;
for(char c:x)
nr=nrx10+c-'0";
if(y=="1"|ly=="kg")
nr=nrx1000;
if(y=="dl")
nr=nrx100;
if(y=="cl")
nr=nrx10;
return nr;

int getnorm(string s)

if(nrm.count(s)==0)
nrm[s]=++nrcrt;
return nrm[s];
3
date parse(string s)
{
string unit,num;
while(s.back()!=" ")
{
unit.push_back(s.back());
s.pop_back();
}
s.pop_back();
while(s.back()!=" ")
{
num.push_back(s.back());
s.pop_back();

140

b

}

s.pop_back();
reverse(unit.begin(),unit.end());
reverse(num.begin(),num.end());
int nr=getnr(num,unit);

return {getnorm(s),nr};

vector<int> good;

int

lgmax,lg;

vector<int> me;
vector<vector<int>> sol;
void bkt(int mask,int bit)

{

b

if(bit==1g)

{
vector<int> aux=me;
if(aux.size()>1gmax)

{
sort(aux.begin(),aux.end());
lgmax=aux.size();
sol.clear();
sol.push_back(aux);

}

else if(aux.size()==1gmax)

{
sort(aux.begin(),aux.end());
sol.push_back(aux);

}

return;

3

bkt(mask,bit+1);

bool ok=1;

for(date x:retetalgood[bit]])
{

flx.nume]-=x.c;

if(fIx.numel<0)
ok=0;

}
me.push_back(good[bit]);
if(ok)

bkt(mask+(1<<bit),bit+1);
for(date x:retetalgood[bit]])

fIx.numel+=x.c;
me.pop_back();

bool bylg(int a,int b)

{

b

int

return retetala]l.size()>retetalb].size();

main()

ios_base::sync_with_stdio(); fin.tie(0);
fin>>cerinta; fin.get();
string curent;

while()
{
getline(fin,curent);
if(curent[0]=="#")
break;

141

142

else

{
date x=parse(curent);
fIx.numel+=x.c;
}
}
int ind=1;
while()
{
getline(fin,curent);
if(curent[0]== | |curent[@]=="%")
{
vector<date> v;
for(int i=1;i<=nrcrt;i++)
if(f2[i]1!=0)
v.push_back({i,f2[il});
retetalind]=v;
for(int i=T;i<=nrcrt;i++)
f2[i]=0;
if(curent[0]=="x")
break;
ind++;
continue;
}
date x=parse(curent);
f2[x.numel+=x.c;
}
for (int i=1;i<=ind;i++)
{
bool ok=1;
for (date x:retetali])
ok&=(f[x.numel>=x.c);
if (ok) good.push_back(i);
3
if(cerinta==1)
{
for(int i:good) fout<<i<< g
return 0;
3

lg=good.size();
sort(good.begin(),good.end(),bylg);
bkt (0,0);
sort(sol.begin(),sol.end());
fout<<lgmax<< :
for(auto i:sol)
{
for(auto j:i) fout<<j<< g
fout<< :
}

return 0;

10.4 Problema Tort

Propusa de: instr. Cristian Francu, Nerdvana Bucuresti
Construim un tort. Pornim cu o foaie de grosime A. Putem efectua una din doua operatii posibile:

o Impaturim tortul, indoind foaia pe din doui. Grosimea tortului se dubleaza.
¢ Adaugam un strat de unt pe deasupra. Stratul de unt are grosime B. Grosimea tortului
creste cu B.

Cerinte

1. Dandu-se A, B si C sa se spuna care este grosimea minima a unui tort ce are grosime cel
putin egala cu C.

2. Déandu-se A, B si C sa se spuna care este numarul minim de operatii in care se poate obtine
acea grosime minima.

Date de intrare

Pe prima linie a fisierului de intrare tort.in se vor gasi numarul cerintei, P, si numarul de teste,
T. Pe urmatoarele T linii se vor gasi triplete A B C.

Date de iesire

In fisierul de iesire tort.out afisati raspunsul cerut pentru fiecare triplet de la intrare, cite unul
pe linie.

Restrictii

« 1< A B<10°
« max(A, B) < C < 10"
e 0T <108

Puncte Restrictii

1 6 P=1, A=B

2 7 P=2 A=1,B=1siC are forma 2" — 1
3 10 P=2A=1B=1
4

5

6

7

15 P=1T=1,500<A,B <1000, 10000 < C < 200000
7 P=2T=1,500<A,B <1000, 10000 < C < 200000

19 P =1, fara restrictii suplimentare

36 P = 2, fara restrictii suplimentare

Exemple
tort.in tort.out Explicatii
12 480 480 = (90 + 100) x 2 + 100
90 100 480 510 510 = [(15+25+ 25+ 25+ 25) x 24 25] x 2
15 25 507

143

2 2 3
90 100 480 7
15 25 507
11 640 640 =10 X2 x2X2x2x2x2
10 10 632 sau

640 = (10+10) x 2 X 2 X2 X2 X2
21 6
10 10 632
21 8 Tortul va avea grosime minima 768,
3.7 767 obtinuta astfel:

T8 =3 X2 X2X2X2X2X2X2xX2

10.5 Rezolvarea problemei Tort

Observatie: Orice grosime 2™ x a +m X b poate fi obtinuta prin Indoiri si ungeri cu unt, deoarece
b y 3)
putem sa efectuam n indoiri si apoi m ungeri.

Cerinta 1

» Vom incerca toate variantele pentru n, deoarece 2" va depasi rapid c.
¢ Pentru un n dat calculam m minim astfel Incat 2" x a +m x b > c.
o Astfel:

m=(c—2"xa)/b

daca impartirea este exacta sau

m=(c—2"xa)/b+1

daca impartirea este cu rest.
o Astfel, formula finala a lui m este

m=(c—2"xa+b—-1)/b

o Grosimea tortului va fi:

g=2"xa+mxb

Inlocuind:

g=2"xa+(c—2"xa+b—1)/bxb

Algoritmul pentru determinarea grosimii minime a tortului este:

citeste a, b, c
grosime__minima <— 00
n <0
while 2" x a < ¢ do
g+ 2"xa+(c—2"xa+b—1)/bxb
if g < grosime minima then
. grosime minima ¢« g
n<n-+1
afiseaza grosime minima

144

Complexitatea este O(logc) ca timp si O(1) memorie.

Cerinta 2

Observatie: O combinatie 2" x a +m X b se obtine in numar minim de operatii astfel:

o Avem n indoiri.

» Vrem sa obtinem cele m straturi de unt din cat mai putine aplicari.

e Pentru aceasta trebuie sa ,,strecuram” puterile lui 2 din m printre indoiri.

o Este posibil ca n sa fie prea mic, caz in care vom adauga mai multe puteri ale lui 2 din m
la inceput.

Cu alte cuvinte, pentru o combinatie 2" X a +m X b vom obtine numarul minim de operatii astfel:

o La inceput vom unge k straturi de unt, unde k = m/2".

e Apoi la fiecare dublare vom unge un singur strat doar daca puterea corespunzatoare a lui
2 din m exista in m (are bit 1 in reprezentarea binara a lui m).

e Informatic spus, numarul minim de mutari este:

n 4+ m/2" 4+ popcount(m mod 2")
unde popcount(x) este numarul de biti 1 din reprezentarea binara a lui x.

Algoritmul pentru determinarea numarului minim de operatii este:

citeste a, b, c

grosime__minima 4— 0o

n <0

while 2" x ¢ < ¢ do

m<+ (c—2"xa+b—1)/b

g—2"xXa+mxb

if g < grosime minima then

grosime__minima <— g

nrop_ minim <« n + m/2" 4+ popcount(m mod 2")

else if g = grosime_minima then
operatii = n + m/2" 4+ popcount(m mod 2")
if operatii < nrop_minim then

| nrop_minim « operatii

n<n+1

afiseaza nrop minim

Complexitatea este O(log ¢ X p) ca timp si O(1) memorie, unde p este timpul de calcul al functiei
popcount(x). Cu o metoda bruta p este O(logz), dar existda si metode mai rapide ce duc la timp
O(loglog).

Observam ca putem folosi aceasta implementare pentru a rezolva si prima cerinta.

Anexa

Algoritmul de mai sus, implementat eficient, se va Incadra in timp, dar la limita, existand riscul
sa depasim timpul cu o implementare mai putin eficienta ,,de concurs”. Ce putem face?

Sa observam ca fisierul de intrare va fi foarte mare, trei milioane de numere. Precum stim (sau
nu :-) citirea cu streams din C++ sau cu fscanf in C este destul de lenta. Putem citi mai rapid

145

aceste numere folosind o combinatie de functie de biblioteca fread() si prelucrare a caracterelor,
numita ,.citire rapida” sau ,,parsing”, in limbajul olimpicilor.

Iata mai jos un exemplu de cod ce citeste rapid un intreg unsigned long long.

FILE *fin, *xfout;
int rpos = BUFSIZE - 1; char rbuf[BUFSIZE];

static inline char readChar() {
if (!(rpos = (rpos + 1) & (BUFSIZE - 1)))
fread(rbuf, 1, BUFSIZE, fin);
return rbuf[rpos];

3

unsigned long long readInt() {
int ch;
unsigned long long res = 0;

while (isspace(ch = readChar()));
do

res = 10 * res + ch - '0';
while (isdigit(ch = readChar()));

return res;

}

Aceasta citire poate de fi de doua pana la patru ori mai rapida decat citirea standard.

10.6 Cod-sursa pentru problema Tort

static inline unsigned long long findOp(int n, unsigned long long m) {
return n + __builtin_popcountll(m & ((TULL << n) = 1)) + (m >> n);
}

int main(int argc, char xargv[]) {
FILE %*fin, *fout;
int t, cer, i, n;
unsigned long long p, a, b, c, thick, minthick, m, op, minop;

fin = fopen("tort.in", "r");

fout = fopen("tort.out", "w");
fscanf(fin, "%d%d", &cer, &t);

for (i =0; i<t; it+) {
fscanf(fin, "%11d%11d%11d", &a, &b, &c);

n=0;
minthick = a + (minop =m = ((c —a+b=-1) /b)) *b;
p=2%*a;
n++;
while (p <=c) {

thick =p + (m= ((c-p+b=-1)/7Db)) *b;

if (thick < minthick) {

minthick = thick;

146

minop = findOp(n, m);
} else if (thick == minthick && (op = findOp(n, m)) < minop)

minop = op;
p *= 2;
n++;

)

if (p < minthick) {

minthick = p;
minop = n;
} else if (p == minthick && n < minop)
minop = n;
fprintf(fout, , cer == 1 ? minthick : minop);

3

fclose(fin);
fclose(fout);

return 0;

147

10.7 Problema Zid

Propusa de: prof. Ionel-Vasile Pit-Rada, Colegiul National Traian, Drobeta Turnu Severin

Un monument istoric are forma unui zid circular format din N turnuri. Fiecare turn este construit
din caramizi zidite unele peste altele. Inaltimea unui turn este egala cu numarul de caramizi din
care este format turnul.

Zidul trebuie renovat astfel incat, dupa renovare, turnurile din zid sa aiba aceeasi inaltime. Inal-
timea finala a zidului renovat trebuie sa fie cat mai mica.

Pentru renovare se va utiliza o masina care, la o comanda, alege doua turnuri vecine si adauga in
cele doua turnuri alese acelasi numar de caramizi.

In situatia in care problema nu are solutie, vor trebui eliminate din zid un numar minim de
caramizi, astfel incat, dupa eliminare, renovarea sa fie posibila.

Cerinte

Daca problema nu are solutie, determinati nrmin, numarul minim de caramizi care trebuie elimi-
nate astfel incat, dupa eliminare, renovarea sa poata avea loc.

Daca problema are solutie, determinati hmin, inaltimea finala minima dupa renovare.

Date de intrare

Fisierul de intrare zid. in contine pe prima linie numarul N. Pe a doua linie sunt scrise /N numere
naturale hy he ... hy separate prin cate un spatiu, reprezentand inaltimile initiale ale turnurilor,
in ordine de la 1 la N.

Date de iesire

In fisierul de iesire zid. out se va scrie pe primul rand unul dintre numerele nrmin sau hmin, dupa
caz.

Restrictii

« 1 <N L 100000
e« 0< h<1000000,1<k<N
e Se garanteaza ca raspunsul este cel mult egal cu 10°.

Puncte Restrictii

9 Exista doua inaltimi egale cu 1 si N — 2 Inaltimi egale cu 0.

18 N < 2000; problema are solutie si Amin < 1000
21 2000 < N < 5000; problema are solutie si 1000 < hmin < 3000

#
1
2 12 hy < hy < --- < hy; problema are solutie
3
4
5

40 Fara restrictii suplimentare.

148

Exemple

zid.in zid.out

1243

13

52134

Explicatii
Pentru exemplul 1, se pot aplica urmatoarele comenzi:

 la porzitiile 1 si 2 se zidesc cate 2 caramizi si se obtine zidul 3 4 4 3;
 la porzitiile 1 si 4 se zideste cate o caramida si se obtine zidul 4 4 4 4.

Exemplul 2 nu se poate rezolva decat daca se vor elimina 2 caramizi din turnul 2.
Pentru exemplul 3, se pot aplica urmatoarele comenzi:

 la porzitiile 3 si 4 se zideste cate o caramida si se obtine zidul 5 2 2 4 4;
« la pozitiile 2 si 3 se zidesc cate trei caramizi si se obtine zidul 5 5 5 4 4;
« la porzitiile 4 si 5 se zideste cate o caramida si se obtine zidul 55 5 5 5.

10.8 Rezolvarea problemei Zid

Multe rezolvari pentru cerinta 1 pornesc de la urmatoarea observatie. Oricand avem h; > h;yq,
cumva trebuie sa-l1 aducem pe h;41 la nivelul lui h; (cel putin). Nu ajutd sa crestem perechea
(hi,hit1), caci diferenta dintre ele se va pastra. De aceea, este necesar sa crestem perechea
(hiv1, hite) cu valoarea h; — hjy.

Aceste cresteri sunt strict necesare: nu putem sa egalizam h; si h;41 fara ele. Deci, daca problema
are solutie, orice algoritm care aplica astfel de cresteri va ajunge la solutie.

Subtaskul 1

Fie p si ¢, p < ¢, pozitiile celor doua naltimi 1 si fie A =[p+1,q—1]si B=[¢g+1,p—1]
intervalele (circulare) dintre ele. Apar trei posibilitati.

1. Daca N este impar, atunci exact unul dintre A si B are lungime para, sa spunem B. Atunci
pe B il aducem la inaltimea 1 cu cresteri din doua in doua pozitii. Pe A il umplem similar
si va ramane o Inaltime 0, sa zicem pe pozitia p+ 1. Mai crestem o data perechea (p,p+ 1)
si obtinem un zid cu o Inaltime 2 si restul 1. Numarul de Inaltimi 1 este par, deci putem
completa zidul la naltime 2.

2. Daca N este par, iar A si B au lungimi pare, atunci putem completa zidul la naltime 1.

3. Daca N este par, iar A si B au lungimi impare, atunci putem creste perechi din A si din B
pana raman doar doua Inaltimi de 0, sa zicem la pozitiile p+1 si ¢+ 1. Daca acum crestem
perechile (p,p + 1) si (¢,q + 1), obtinem un zid cu naltimi 2 pe pozitiile p si ¢ si 1 In rest.
Adica am ajuns la problema originala crescuta cu o caramida pe toate pozitiile. Dar poate
exista alte cresteri care duc la o solutie? Raspunsul este ca nu, deoarece orice crestere are
loc pe o pozitie para si o pozitie impara. Suma pe pozitiile de aceeasi paritate cu p si g va
fi mereu cu 2 mai mare decat suma pe pozitiile de paritate opusa. Problema nu are solutie
decat daca eliminam cei doi de 1 initiali.

149

Retinem de aici observatia-cheie ca, daca IV este par, atunci problema are solutie doar daca suma
pe pozitiile pare este egala cu suma pe pozitiile impare.

Subtaskul 2

Daca zidul este nedescrescator, iar problema are solutie, atunci singurul mod in care N poate
fi par este ca perechile de pozitii 1-2, 3-4, 5-6 etc. au Inaltimi egale. Deci putem creste aceste
perechi pentru a aduce zidul la inaltimea hy.

Daca N este impar, putem parcurge zidul de la N la 1. Crestem fiecare Inaltime h; la valoarea
hy, crescand corespunzator si pozitia h;_;. La final, cand crestem h; la inaltimea hy, hy va
creste si el pana la o noua inaltime . Acum, avem o pozitie de Inaltime H si un numar par
(N —1) de porzitii de inaltime hy, pe care le putem creste in perechi pina la H. Asadar, raspunsul
este H, iar complexitatea este O(N).

Subtaskurile 3 si 4

Putem aplica acelasi principiu si la un vector de forma oarecare. In mod repetat, cautam minimul
y. Fie x si z vecinii sai cu © > z. Atunci il aducem pe y la Inaltimea lui x, crescand perechea
(y, z) cu valoarea = — y.

Remarcam ca aceste solutii fac efort proportional cu inaltimea finala a zidului. Aceasta inaltime
poate fi N/2, de exemplu pentru vectorul 1010...101.

Pentru subtaskul 3 este suficienta o implementare in O(log N) per crestere. Putem mentine un
std::set cu coloanele ordonate dupa inaltime. La inaltimi egale preferam coloana cu vecinul cel
mai nalt, ca sa ne asiguram ca nu alegem o coloana de mijloc dintr-un platou de valori egale.
Este nevoie de atentie la implementare, intrucat, la cresterea unei perechi (a,b), atat elementele,
cat si ceilalti doi vecini ai lor 1si schimba criteriul de ordonare, deci toate patru trebuie sterse si
reinserate In structura. Complexitatea este O(hmin - N - log V).

Putem imbunatati constanta acestei implementari, pastrand complexitatea asimptotica, daca
grupam In permanenta platourile de coloane egale. Pentru a aduce un triplet x;, 9, z3 cu x; >
x9 < x3 la aceeasi Inaltime vom face urmatoarele operatii:

o Aducem z; si z3 la aceeasi Inaltime prin cresterea celui mai mic dintre ele, apeland o operatie
de incrementare care sa cuprinda atat elementul mai mic, cat si xs.
o Alternam intre operatia (x,z2) si operatia (z2, z3) pentru a aduce x5 la nivel cu x; si zs.

Acum 1in loc de trei coloane egale putem pastra una singura, deoarece pe celelalte doua le vom
creste impreuna.

Pentru a trece si subtaskul 4, putem reduce timpul de gasire a minimului la O(1) dacd menti-
nem pentru fiecare Indltime o lista inlantuita cu coloanele de acea Inaltime. Complexitatea este

O(hmin - N).

Subtaskul 5

Notam cu xj valoarea care se adauga la turnurile by, si hyy1. Deoarece toate turnurile vor avea
aceeasi Inaltime vom avea:

150

hi+zy + 21
= hy + 21 + 22
=hs+To+a3="1... (10.1)
=hyi+oNv_2+ 2N

=hy+axy_1+ TN

Daca pentru (1) avem o solutie © = (z1,xa,...,zx) care va produce inaltimea finald H, atunci
adaugind / scazdnd o valoare arbitrara d din toate valorile lui vom obtine o alta solutie y =
(1 +d,zo+d,...,xx + d) care va produce inaltimea finala H + 2 - d.

Cazul N impar

Reducénd fiecare dintre egalitatile din (1) obtinem relatiile:

r1=hy —hi +xNn_1

To=hy —hy+ 2N

T3 =hy — hz + 1

24 =h3 — hy + 22 (10.2)

Tn_1=hn_o—hy_1+TNn_3

xny =hy_1—hy +2N_2

Fixam z; = 0, din care rezulta x3, apoi s, ..., zy (N impar), apoi za, x4, ..., xy_1 (N — 1 par).
Nu putem accepta valori negative, astfel ca vom calcula 2, = min{x, | 1 < £ < N} si vom
scadea valoarea x,,;, din toate valorile z;, 1 < k < N. Aceasta solutie va produce Inaltimea
minima Ay, = by + N5 + 1.

Cazul N par

Relatiile (2) determina doua grupuri, ecuatiile cu necunoscute cu indici impari (3) si cele cu
necunoscute cu indici pari (4):

I =]’LN —hl +TN_1
T3 = hg - h3 + 1 (103)

Tn_1=hn_o—hy_1+TNn_3

To = hl - h2 + N
Ty = h3 — h4 + T (104)

TN =hy_1 —hy + TN

Se observa ca, daca adunam toate relatiile din grupul (3), atunci toate variabilele = se reduc,
rezultand egalitatea:

151

hi+hs+---+hy1=ho+hs+ -+ hy (10.5)

Observam din nou ca exista solutie doar daca datele de intrare respecta egalitatea (5). Daca nu,
atunci problema ne cere sa eliminam un numar minim de caramizi. Asadar, raspunsul este dat
de diferenta in valoare absoluta dintre cele doua sume.

Rezolvam separat fiecare grup de relatii initializdnd z; = 0 si respectiv o = 0. Pentru (3)
calculam ;1 = min{zy | 1 < k < N,k impar} si apoi scadem x,;,,; din fiecare z, k impar.
Pentru (4) calculam z,,,2 = min{xy | 1 < k < N,k par} si apoi scadem z,,;,2 din fiecare zy, k
par. Aceasta solutie va produce inaltimea minima hy,;, = h1 + 2y + 1.

Complexitate O(N).

Subtaskul 5, solutia 2

Daca problema are solutie, exista si o solutie greedy. Parcurgem zidul de la 1 la N si, oricand
avem h; > h;y1 crestem perechea (h;, hiy1) cu valoarea h; —h; 1. Astfel obtinem un vector ordonat
si reducem problema la subtaskul 2.

De aceea sunt suficiente doua treceri prin vector. Complexitatea este O(N).

10.9 Cod-sursa pentru problema Zid

using namespace std;
ifstream fin(VK
ofstream fout(K
int N, h[NMAX], i;
int solve3(){
long long a[NMAX], i, j, c[NMAX]1, d, nc, s@, s1, hmin, cmin;
s0=0; s1=0;
for (i=1; i<=N; ++i){
alil=h[il; cl[il=0;
if (i%2==0) s@=s0+h[i];
else s1=s1+h[i];
}
if(N%2==0 && s@!=s1){
fout<<abs(s@-s1)<< :
return 0;
}
for (i=2; i<=N-1; i=i+2)
if(ali-11!=alil){
d=ali-1]-alil;
alil+=d;
ali+1]+=d;
cl[il+=d;
}
for (i=1; i+2<=N-1; i=i+2){
if (alil!=ali+2]){
d=ali]-ali+2];
ali+2]+=d;
ali+3]+=d;
cli+2]+=d;
}
3
if (alN-1]1'=a[NI){

152

int

d=a[N]-a[N-17;
for (i=1; i<=N-2; i=i+2){
alil+=d;
ali+1]+=d;
c[i]+=d;
3
3
if (N%2==1){
Ccmin=1000000000;
for (i=1; i<=N; ++i){
if (c[il<cmin) cmin=c[i];
3

for (i=1; i<=N; ++i) c[il=c[i]-cmin;

3
else{
cmin=1000000000;
for (i=1; i<=N; i=i+2){
if(c[il<cmin) cmin=c[i];
3
for (i=1; i<=N; i=i+2) c[iJ=c[i]-cmin;
cmin=1000000000;
for (i=2; i<=N; i=i+2){
if (clil<cmin)
cmin=c[i];
3
for (i=2; i<=N; i=i+2) c[iJ]=c[il-cmin;
3
nc=0;

for (i=1; i<=N; ++i){
if (c[il>0) nc++;
alil=h[i];

3

for (i=1; i<=N; ++i){
j=i+1;
if (G>N) j=1;
alil=alil+c[il;
aljl=aljl+clil;

}

hmin=al1];

fout<<hmin<<"\n";

return 0;

main(){

fin>>N;

for (i=1; i<=N; ++i) fin>>h[i];
solve3();

fout.close();

return 0;

153

154

Capitolul 11

Barajul 2

11.1 Problema Lemmings

Propusa de: prof. Gheorghe-Eugen Nodea, Centrul Judetean de Excelenta Gorj

Lemmings este un joc video de strategie extrem de popular in anii 1990. Lemingii sunt niste
rozatoare mici (soricei), care vietuiesc mai ales in tundra din jurul Cercului Arctic. Sunt erbivori,
hranindu-se mai ales cu bulbi si radacini. Vizuinile lor au camere de odihna, de hrana si camere
de joaca.

Avem N camere numerotate de la 1 la N, dispuse circular. M camere contin hrana, iar K lemingi
sunt pozitionati in camerele lor de odihna care nu contin hrana.

Daca un leming se afla in camera i si se deplaseaza spre dreapta, ajunge in camera i + 1 (cu
circularitate: daca este in camera N, merge In camera 1). Daca se misca spre stdnga, ajunge in
camera i — 1 (cu circularitate: daca este in camera 1, merge in camera N).

Trecerea dintr-o camera in alta se face Intr-o unitate de timp.

Fiecare leming alege o directie fixa de deplasare (stdnga sau dreapta), si va merge constant in
aceasta directie pentru urmatoarele 7" unitati de timp. Lemingii nu stationeaza.

Daca un leming se afla intr-o camera cu hrana, el consuma instantaneu hrana respectiva si isi
continua deplasarea.

Daca doi lemingi se intersecteaza (se intélnesc) acestia dispar. Daca se intélnesc intr-o camera in
care este hrana, unul dintre ei consuma hrana inainte de a disparea.

Cerinte

Sa se determine cantitatea maxima de hrana consumata de soricei in 7" unitati de timp.

Date de intrare

Fisierul de intrare lemmings.in contine pe prima linie numerele naturale N M K T', cu semnifi-
catia din enunt. Pe urmatoarea linie numerele celor M camere care contin hrand, in ordine strict
crescatoare. Ultima linie din fisier contine numerele celor K camere unde se afla initial lemingii,
de asemenea in ordine strict crescatoare.

155

Date de iesire

Fisierul de iesire lemmings.out contine o singura linie pe care este scris un numar ce reprezinta
cantitatea maxima de hrana consumata de lemingi.

Restrictii

« 1< N < 1000000
e 1< M, K < 20000

« 1 <T <500
Puncte Restrictii
1 25 1<N<100,1 <K <20
2 10 Distanta initiala intre oricare doi lemingi este mai mare decat 2 - T
3 15 Nu exista hrana si nici lemingi in camerele 1,2,...,T
4 20 1 <N <100000, 1 <M, K <5000
5 30 Fara alte restrictii
Exemple
lemmings.in lemmings.out
11 452 4
24511
137910
136 42 5
1378913
26 10 11
Explicatii

In primul exemplu, avem N = 11 camere din care M = 4 contin hrana (camerele 2 4 5 11). Cei
K = 5 lemingi se afla in camerele 1 3 7 9 10. Dupa 7" = 2 unitati de timp cantitatea maxima de
hrand consumata este egala cu 4. O solutie posibila este ca toti lemingii sa mearga spre dreapta.

In al doilea exemplu, o posibila alegere a directiilor este:

¢ Lemingul aflat in camera 2 merge spre stanga.

o Lemingul aflat in camera 6 merge spre dreapta.
e Lemingul aflat in camera 10 merge spre stanga.
e Lemingul aflat in camera 11 merge spre dreapta.

11.2 Rezolvarea problemei Lemmings

Toate solutiile de mai jos necesita abilitatea de a calcula cantitatea de hrana disponibila intr-un
interval de camere. Putem precalcula aceasta informatie intr-un vector de lungime n (sau dublat
la 2n, pentru a simplifica tratarea circularitatii). Notam 1 pe pozitiile unde exista hrana si 0 in
rest, apoi calculam sume partiale. Acum cantitatea de hrana din intervalul [st, dr| este diferenta
intre sumele partiale la pozitiile dr si st — 1.

Aceasta tehnica adauga un factor de O(n) la timp si la memorie. Pentru glorie virtuala, putem
evita acest factor daca calculam informatia in O(m + k + t), interclasdnd vectorii de hrana si

156

lemingi. Nu putem calcula hrana din orice interval arbitrar, dar putem calcula o informatie care
ne intereseaza, si anume: pentru intervalul [st, dr| dintre doi lemingi, cata hrana este consumata
in cele patru scenarii posibile?

1. Lemingul stang porneste spre stanga, iar cel drept spre stanga.
2. Lemingul stang porneste spre stanga, iar cel drept spre dreapta.
3. Lemingul stang porneste spre dreapta, iar cel drept spre stanga.
4. Lemingul stang porneste spre dreapta, iar cel drept spre dreapta.

Subtask 1

Cand k < 20 putem evalua toate cele 2* posibilitati de orientare. Pentru fiecare posibilitate putem
calcula hrana consumatd in O(k), iar o solutie in O(2* - k) bine scrisi va trece toate testele.

Putem si sa evaluam posibilitatile in ordinea codului Gray, caz in care Intre doua posibilitati eva-
luate consecutiv trebuie sa schimbam directia unui singur leming. Astfel obtinem complexitatea
O(2F), dar aceasta complexitate nu este necesard pentru obtinerea punctelor pe subtask.

Subtask 2

Daca distanta intre oricare doi lemingi (consecutivi) este mai mare de 2¢, atunci fiecare leming
are ,teritoriul” sau in care doar el ajunge la hrana. Deci este suficient sa calculam, pentru fiecare
leming, maximul dintre hrana disponibila la stanga si la dreapta, iar raspunsul este suma acestor
maxime.

Acest subtask poate ajuta la verificarea corectitudinii codului de sume pe interval, cu circularitate.

Subtask 3

Dat fiind c& in intervalul [1,¢] nu exista nici lemingi, nici hrana, putem considera vectorul li-
niar. Algoritmul corect este programarea dinamica descrisa mai jos, iar subtaskul poate ajuta la
verificarea codului fara complexitatea suplimentara data de circularitate.

Subtaskul 4

Solutiile optime necesita reducerea problemei de la forma circulara la forma liniara. Pentru
aceasta, este suficient sa incercam ambele orientari pentru unul dintre lemingi, sa zicem primul.
Apoi putem trata zona de n — ¢t camere ramase ca pe un vector normal (liniar). Calculam
rezultatul pentru acest vector si adaugam hrana consumata de primul leming. Raspunsul este
maximul dintre cele doua variante.

Pentru forma liniara, o prima abordare defineste H[i][j][st/dr][st/dr] ca fiind cantitatea maxima
de hrana pe care o pot manca lemingii 7,2 + 1,...,7 In conditiile In care lemingul 7 porneste
spre stanga / dreapta, iar lemingul j porneste spre stanga / dreapta. Practic, H|[i|[j] este un
cvadruplet.

Putem calcula recurent H fie incercand sa impartim H[i]|[j] in doua portiuni H[i][r] si H][r][J]
pentru fiecare r € [i + 1,5 — 1], fie extinzand intervalul [i,j — 1] cu o pozitie la dreapta. De
exemplu,

Hli[r][st)[st] + H[r][j][st][s!]

H[i][5][st][s] = max { HYi[r][st][dr] + H[r][j][dr][51]

157

Observam ca lemingii 7 si j 1si pastreaza orientarile, iar pentru lemingul £ Incercam ambele
orientari. Cazul de baza este 7 —7 = 1, care este un singur interval intre doi lemingi consecutivi.

Acest algoritm duce la complexitatea O(k?) sau O(k?).

Subtaskul 5

Pentru punctaj maxim putem descrie o recurenta mai simpla. Fie x;, z, ...z pozitiile lemingilor.
Fie S[z,y| cantitatea de hrana din intervalul inchis [z,y], cu conventia ca, daca x > y, atunci
Slx,y] = 0. Fie H[i][st/dr] cantitatea maxima de hrana consumata de primii 7 lemingi in conditiile
in care lemingul ¢ porneste spre stanga, respectiv spre dreapta. Atunci iau nastere patru cazuri
similare, deoarece pentru fiecare orientare a lemingului ¢ vom analiza cele doua orientari posibile
pentru lemingul ¢ — 1.

Hii —1|[st S i—1 Z_t 5y L
ffﬁ“sﬂrzlnax [? HS]'+ hnax{x 1, X } w]

H[i —1][dr] + Smax{x;_1 + t,z; — t}, ;]
In cuvinte, lemingul 7 va consuma hrand spre stdnga, nu mai mult de ¢ pozitii si fara a depasi
lemingul ¢ — 1 sau hrana consumata de acesta. Similar,

H[il[dr] = max {H[z — 1][st] + Sz, mm{xz +t, 241}

H[i — 1][dr] + S[z;, min{z; + t,2;11}]
In cuvinte, lemingul 7 va consuma hrani spre dreapta, nu mai mult de ¢ pozitii si fara a depasi
lemingul ¢ 4 1. Subliniem ca nu ne preocupam de situatia in care lemingul 7 + 1 se Indreapta spre
stanga. Vom trata acest caz (lemingii ¢ si ¢ + 1 se Indreapta unul spre celalalt) din perspectiva
lemingului ¢ + 1.

Motivul pentru care aceasta recurenta este corecta este ca lemingul ¢ nu poate fi influentat de
decizia lemingilor 1,2,...,2 — 2. Lemingul ¢ — 1 1i blocheaza pe toti acestia, indiferent in ce
orientare se afla.

Acest algoritm are complexitatea O(k), iar complexitatea totala este O(k+m+t) sau O(k+m+
t +n) in functie de implementarea sumelor pe interval.

11.3 Cod-sursa pentru problema Lemmings

using namespace std;

ifstream fcin("lemmings.in");
ofstream fcout("lemmings.out");

int n, m, k, t, Max, x;
int sp[2000003];

int s[20003];

int dp[20003]1[2];

int main()

{

fcin >> n >>m >> k >> t;
for (int i=1; i<=m; i++)

{

158

fcin >> x;
splx] = 1;

for (int i=1; i<=n; i++)
sp[i] += sp[i-1];

for (int i=n+1;i<=2%n;i++)
spli] = sp[i-1] + (spl[i-n] - sp[i-n-11);

for (int i=1; i<=k; i++)
fcin >> s[i];

int val s[1] + n;
int poz = val - t;
poz = max(poz, s[kl+1);

dp[1]1[0] = splval]l - splpoz-11;
for (int i=2; i<=k; i++)

{
int vall = s[i] - t;
int val2 = s[i-1] + t;
int Max = max(vall, s[i-1]1) - 1;
if (vall > val2)
dpl[il[0] = max(dpli-11[0@]1, dpLi-11[11) + spls[il]l - sp[Max1;
else
{
int intersect = min(s[i-1]1 + t, s[il);
dp[iJ[0] = max(dpl[i-11[0J+spls[il]-sp[Max], dpli-T11[1]1+splslil]-splintersect]);
}
if (1 !'= k)
{
int Maxup = min(s[i]+t, s[i+1]);
dp[il[1] = max(dp[i-11[1], dp[i-11[01) + sp[Maxup]l - sp[s[il-1];
}
}
dp[k]1[1] = max(dp[k-11[0], dpl[k-11[11);

int pozl = s[1] + n - t;
pozl = max(s[k]+1, pozl);
int poz2 = s[k] + t;

if (poz2 >= pozl)

{

pozl--;

dpLk][1] += splpoz1] - spls[kl];
3
else

dp[k1[1] += splpoz2] - splsCkll;

Max = max(dp[kI[@]1, dpl[kI[11);

dpl[11[0] = o,
int Maxim = min(s[1] + t, s[2]);
dp[11[1] = sp[Maxim]l - sp[s[11-11;
for (int i=2; i<=k; i++)
{
int valil s[i] - t;
int val2 = s[i-1] + t;
int Max = max(vall, s[i-1]1) - 1;
if (vall > val2)

159

dpl[i][0] = max(dp[i-1]1[0], dpl[i-11[1]1) + sp[s[il] - sp[Max];
else

{
int intersect = min(s[i-11 + t, s[il);
dp[i][0] = max(dp[i-11[0]1+spl[s[il]l-sp[Max], dpl[i-11[1]+spls[il]l-splintersect]);

}
if (i !'= k)
{
int Maxup = min(s[i] + t, s[i+1]);
dp[il[1] = max(dp[i-11[1], dpLi-11[0]) + sp[Maxup]l - sp[s[il-11;
}

3

int pozitie = s[k] + t;

pozitie = min(pozitie, s[1] + n);
dp[kI[1] = max(dp[k-11[0], dp[k-11[11);
dp[k][1] += sp[pozitie]l - sp[sCkl];

fcout << max({Max, dp[k][0], dp[k1[11});

return 0;

160

11.4 Problema Mutare

Propusa de: prof. Ciprian Chesca, Liceul Tehnologic ,Grigore C. Moisil” Buzau

Un indicator numeric este un dispozitiv de afisaj electronic destinat afisarii unei cifre zecimale.
Acesta contine 7 segmente notate cu a, b, ¢, d, e, f, g. Afisarea unei cifre se face prin aprinderea
segmentelor evidentiate din figura de mai jos, corespunzatoare fiecarei cifre:

a
D
.
e c c e
d ol
(2 (L J

Un numar natural N poate fi afisat utilizdnd unul sau mai multe indicatoare numerice.

Definim mutarea unui segment ca fiind succesiunea operatiilor de stingere a acestui segment si
aprinderea sa in orice alta pozitie, de pe oricare dintre indicatoarele numerice utilizate pentru
afisarea numarului V.

Cerinte

Cunoscand un numar natural N, sa se scrie un program care determina numerele care se pot afisa
dupa mutarea unui singur segment, dintre segmentele utilizate pentru afisarea numarului N.

Date de intrare

Fisierul de intrare mutare.in contine pe prima linie numarul natural V.

Date de iesire

Fisierul de iesire mutare.out va contine pe prima linie numarul 7' ce reprezinta numarul total de
numere care se pot obtine prin mutarea unui singur segment, iar pe urmatoarele 7" linii, numerele
obtinute, in ordine crescatoare, cate un numar pe fiecare linie.

Restrictii

H

« 0 <N <107

o doar numerele de o singura cifra pot incepe cu cifra 0

« se garanteaza ca pentru toate testele exista cel putin un numar care se poate obtine prin
mutarea unui singur segment.

Puncte Restrictii
16 0<N <10
28 10 < N < 10®
56 10°< N <10

w ||~ |3k

161

Exemple

mutare.in mutare.out

69 6

58
60
66
83
85
99

Explicatii

N =69
Se pot obtine 6 numere prin mutarea unui singur segment si anume: 58, 60, 66, 83, 85 si 99.
De exemplu:

« numarul 60 se obtine prin stingerea segmentului g al indicatorului cifrei 9 si aprinderea
segmentului e, tot al indicatorului cifrei 9.

« numarul 83 se obtine prin stingerea segmentului f al indicatorului cifrei 9 si aprinderea
segmentului b al indicatorului cifrei 6

11.5 Rezolvarea problemei Mutare

Solutia 1 ,,brute-force”

Se construieste o structura de date care poate memora starea fiecarui segment al unui indicator si
apoi se extinde aceasta structura pentru mai multe indicatoare. Daca un segment este aprins, in
structura se va memora 1 si respectiv 0 daca segmentul este stins. Se determina apoi numarul de
cifre ale lui IV, pe care sa-1 notam cu nrcifre si se transforma fiecare cifra a numarului N intr-un
element al structurii. Se parcurg apoi toate numerele care au exact nrcifre si se pastreaza doar
acelea care difera fata de N printr-o singura mutare. Pentru a rezolva aceasta problema trebuie
realizate functii specifice pentru:

e comparare a doua indicatoare
e comparare a doua numere sub forma lor echivalenta din structura
o transformarea unui numar din forma sa structurata in numar de tip long long

Pentru a compara doua numere sub forma lor echivalenta din structura se poate folosi operatorul
XOR. Solutia poate obtine aproximativ 40 puncte.

Solutia 2 ,,perechi de cifre”

O alta varianta, mai eficienta, se poate realiza prin parcurgerea tuturor perechilor 1 <1 < j <
nrcifre avand In vedere ca se face o singura mutare, mutare care stinge un segment pe pozitia ¢
si-1 aprinde pe pozitia j. Pozitiile 7 si j pot fi chiar egale, caz In care mutarea unui segment se face
in cadrul aceluiasi indicator. Sunt necesare si alte functii suplimentare fata de varianta anterioara
cum ar fi o functie care sa testeze daca un indicator la care s-a aprins un segment reprezinta sau
nu, un numar. Ordinul de complexitate al solutiei este O(nrcifre?). Solutia obtine 100 puncte.

11.6 Cod-sursa pentru problema Mutare

162

#include <algorithm>
#include <cassert>
#define cmax 25
using namespace std;

ifstream fin("mutare.in");
ofstream fout("mutare.out");

struct indicator

{
int segl[71];
1
struct numar
{
int nr_cifre;
indicator T[cmax];
1
indicator cz[10]1={1,1,1,1,1,1,0, // 0
0,1,1,0,0,0,0, // 1
1,1,0,1,1,0,1, // 2
1,1,1,1,0,0,1, // 3
0,1,1,0,0,1,1, // 4
1,0,1,1,0,1,1, // 5
1,0,1,1,1,1,1, // 6
1,1,1,0,0,0,0, // 7
1,1,1,1,1,1,1, // 8
1,1,1,1,0,1,13; // 9

long long sol[10000];
int s = 0;

int compara_ind(indicator A, indicator B)
{
for (int i = 0; i<= 6; i++)
if (A.seg[i] != B.seg[i]) return 0;
return 1;

3

int e_numar(numar A)
{int i, k, ok = 0 ;
for (i = A.nr_cifre ; i > 0; i--)
for (k = 0; k <= 9 ;k++)
if (compara_ind(A.T[iJ,cz[k])) {ok++;break;?}
if (ok == A.nr_cifre) return 1;
else return 0;

}

long long afisare_numar(numar A)
{int i, k;
long long S = 0;
for (i = A.nr_cifre ; i > 0; i--)
for (k = 0; k <= 9 ;kt+t)
if (compara_ind(A.T[i],cz[k])) S = S*10 + k;
return S;

}
long long N;

int main()

163

{long long CN;
int uc,k,i,j,k1,k2;
numar W,CW;
fin >> N;
// determin numarul si configuratia indicatoarelor utilizate pentru N
k =0;

uc = CN%10;
W.T[++k] = cz[uc];
CN /= 10;
3
while (CN);
W.nr_cifre = k;

//analizez toate perechile de forma (1<=i<=j<=nr_cifre) intre care se poate face o mutare
for (i = W.nr_cifre; i >=1 ; i--)
for (j = W.nr_cifre; j >=1 ; j--)
{
// analizez toate segmentele indicatorului i
for (k1 = 0; k1 <= 6;k1++)
if (W.T[i].seg[kl] == 1)
{
// analizez toate segmentelor indicatorului j
for (k2 = 0; k2 <= 6;k2++)
if (W.T[j]1.segl[k2] == 0)

{
CW = W;
// efectueaza mutarea in numarul CW
CW.T[i].seglkl] = 0;
CW.TL[jl.seglk2] = 1;
// afisez numarul (daca e numar!! si daca prima sa cifra nu este @
if (e_numar(CW))
if (CW.nr_cifre == 1) sol[++s] = afisare_numar(CW);
else
if (compara_ind(CW.T[CW.nr_cifrel],cz[0])==0)
sol[++s] = afisare_numar(CW);
}

}
3

sort(sol + 1,s0l + s + 1);
fout << s <<"\n";
for (i =1; i <= s; i++)

fout << sol[i] <<"\n";
fin.close(); fout.close();
return 0;

}

164

11.7 Problema Wall-E

Propusa de: stud. Rares-Andrei Cotoi, Facultatea de Matematica si Informatica, Universitatea
Babes-Bolyai Cluj-Napoca

Robotelul explorator Wall-E se deplaseaza pe o harta reprezentata ca o succesiune de celule,
numerotate de la 1 la N. Fiecare celula are asociat un anumit nivel de energie.

Se numeste secventda o succesiune de celule de pe harta numerotate consecutiv. FEnergia unei
secvente este egala cu suma nivelurilor de energie asociate celulelor din care este formata secventa.

Wall-E poate modifica nivelul de energie al unor celule respectand urmatoarele doua conditii:

 nivelul de energie al unei celule modificate creste cu un numar natural cuprins intre 1 si X;
e suma tuturor valorilor cu care au crescut nivelurile de energie ale celulelor modificate este
egala cu S.

Dupa modificarea nivelurilor de energie, Wall-E este interesat de secventele critice de lungime L.
O secventa de lungime L este considerata critica daca energia secventei este minima, in raport
cu toate secventele de lungime L existente pe harta.

Cerinte

Determinati energia maxima a unei secvente critice de lungime L, dupa ce Wall-E modifica
convenabil nivelul de energie al unor celule, respectand conditiile din enunt.

Date de intrare

Fisierul de intrare walle.in contine pe prima linie numarul natural N, reprezentand numarul
de celule de pe harta. Pe a doua linie se afla numerele naturale X, S si L cu semnificatia din
enunt. Pe ultima linie se afla NV numere naturale, reprezentand nivelurile de energie ale celulelor
de harta in ordinea numerotarii acestora. Valorile scrise pe aceeasi linie sunt separate prin cate
un spatiu.

Date de iesire

Fisierul de iesire walle.out contine o singura linie pe care este scris raspunsul la cerinta.

Restrictii

e« 1IKLLSN<LI10D

Nivelul de energie al oricirei celule este un numér natural nenul < 103,
1< X <10°

1<S<10°

165

Puncte Restrictii

1 13 1 <N <1000
2 10 N >1000, L =1
3

4

5

6

6 N >1000, S =1
10 N>1LX=1
28 1001 < N < 10000

33 Fara restrictii suplimentare.

Exemple

walle.in walle.out

- w
N Ol
w w

w NG
- w
QN
]

N

Explicatii

Exemplul 1 N =6, X =3, S =5, L = 3. Wall-e poate modifica nivelul de energie al celulelor
astfel:

« pentru celula 1 nivelul de energie creste cu 2;
« pentru celula 2 nivelul de energie creste cu 1;
» pentru celula 3 nivelul de energie creste cu 2.

Nivelurile de energie ale celulelor de pe harta devin: 3 3 56 5 4. Secventele de lungime L = 3 au
energia

o 3+3+5=11
o 3+5+6=14
o 5+6+5=16
o 6+5+4=15

Exista o singura secventa critica de lungime 3 si aceasta are energia 11, aceasta fiind valoarea
maxima posibila.

Exemplul 2 N =5 X =2, 5 =3, L =1. Wall-E poate modifica nivelul de energie al celulelor
astfel:

« pentru celula 2 nivelul de energie creste cu 2;
« pentru celula 5 nivelul de energie creste cu 1.

Nivelurile de energie ale celulelor de pe harta devin: 3 3 4 7 3. Secventele de lungime L = 1 sunt
reprezentate de valoarea fiecarei celule, deci secventele critice de lungime L au energia 3, aceasta
fiind valoarea maxima posibila.

166

11.8 Rezolvarea problemei Wall-E

Cerinta 1

O abordare posibila este de a genera folosind metoda backtracking toate solutiile obtinute prin
alocarea energiei in oricare dintre cele IV celule, cu respectarea conditiei date. O astfel de solutie
obtine aproximativ 20 de puncte, fiind o solutie viabila doar In cazul unui N foarte mic.

Pentru a rezolva problema intr-un mod eficient, vom folosi o abordare de tip Greedy. Incercim
sa identificam pentru o valoare potentiala 7', daca este posibil sa distribuim energia suplimentara
astfel Incat toate secventele sa aiba cel putin energia 7. Daca putem atinge cel putin suma 7'
pentru fiecare secventa de lungime L, dar nu putem atinge cel putin suma 7"+ 1, raspunsul final
este T'. Stiind ca 7" este suma elementelor dintr-o secventa de lungime L, remarcam faptul ca
T € [0,sumaFElem + S], unde sumaFElem este suma tuturor elementelor din celulele initiale.
Asadar, T poate fi determinat optim folosind cautare binara pe intervalul [0, sumaElem + S].

Pentru fiecare suma-candidat 7', procesam secventele de lungime L de la stanga spre dreapta, iar
pentru fiecare secventa care are nevoie de energie suplimentara (suma secventei < T'), adaugam
energie incepand de la cea mai din dreapta celula a secventei, apoi continuam spre stanga. Uti-
lizam aceasta strategie deoarece o celula care se afla la pozitia j afecteaza toate secventele care
o includ (de la cea care incepe la pozitia j — L + 1, pana la cea care incepe la pozitia j). Astfel,
prin adaugarea energiei in celula cea mai din dreapta a unei secvente, maximizam numarul de
secvente ulterioare care beneficiaza de aceasta crestere. De exemplu, daca N = 10 si L = 3:

Celula 3 afecteaza secventele [1, 3], [2, 4], [3, 5]

3 HEEN

12345678910
Celula 1 afecteaza doar secventa [1, 3]

1

] HEEE

12345678910

Pentru a calcula rapid sumele secventelor initiale, vom folosi un sir de sume partiale sum, astfel:

sum[1] Zlev[i]
fori+2ton—L+1do
L ji+L—1

sumli] <— sumli — 1] + v[j] — v[i — 1]

La momentul parcurgerii secventelor de lungime L, putem folosi o coada cu dublu acces (sau
o stiva) pentru mentinerea pozitiilor ¢ in care mai putem adauga energie (v[i] < X). Pentru o
suma-candidat 7', un algoritm de verificare a validitatii lui 7" este:

167

function PUTEMATINGEENERGIA(T)

Initializam o coada cu dublu acces dq cu pozitiile 1 pana la L — 1
fori+ 1,L—1do

 pusli] « 0
R+ S > energia ramasa de distribuit
P+ 0 > energia suplimentara pe secventa curenta

for st +— 1, n— L+ 1do

dr < st+ L —1

dq.pushBack(dr) > addugdm pozitia dr in dq
P« P — pus[st — 1] > elimin energia adaugata la pozitia care iese din secventa
if dq.front() = st — 1 then
L dq.popFront() > eliminam pozitia care iese din secventa
if sum[st] + P < T then

D« T — P — sum|st| > deficitul pentru secventa curenta

while dg.size() >0 and D >0 and R > 0 do

w < dq.back()

A < min(D, min(R, X — pusfw])) > cantitatea de energie de adaugat
D+ D-A

R+ R-A

PP+ A

pusw] + pus[w] + A

if pusjw] = X then

B L dq.popBack() > eliminam pozitia daca am atins limita X
if D > 0 then
L L return false > nu putem atinge energia T’ pentru aceasta secventa
return true > toate secventele pot avea cel putin energia T

Complexitatea totala a algoritmului este O((N + S) - log(suma__initiala + S)), unde cautarea
binara are complexitatea O(log(suma_ initiala+ S)) si O(N + 5) (in cel mai rau caz) reprezinta
timpul de verificare a validitatii unei sume-candidat.

11.9

#include
#include
#include
#include
#1include
#include

Cod-sursa pentru problema Wall-E

<iostream>
<fstream>
<vector>
<algorithm>
<deque>
<assert.h>

using namespace std;

ifstream f("walle.in");
ofstream g('walle.out");
typedef int64_t Int;

const int N=100010;

int n,m,k,L,stiva[N];

Int cnt,sum[N],pus[N],v[N],X,S;
bool ok(int64_t F)

{

/// verific daca pot distribui cele S unitati astfel incat fiecare suma sa fie >=F
deque<int> dq;/// deque cu pozitiile in care pot sa adaug unitati
for(int i=1;i<L;i++)/// pot sa adug oriunde intre pozitiile 1 ... L-1

{

168

dg.push_back(i);
pus[i]=0;
3
Int R=S;/// mai pot folosi
Int P=0;/// ce suma suplimentara am pe intervalul [st,dr]
for(int st=1,dr=L;dr<=n;st++,dr++)/// pe orice secventa de lungime L

{
dg.push_back(dr);pusl[drl=0;/// pentru sum[st] pot sa adaug si in pozitia dr
P-=pus[st-11;
if(dq.front()==st-1)/// nu mai pot sa adaug din pozitia
dg.pop_front();
if (sum[st]+P<F)
{
Int D=F-P-sum[st];/// sum[st] mai are nevoie de D unitati
while(dg.size()>0 && D>0 && R>Q) ///mai am de pus,mai am de unde, mai am unde
{
int w=dq.back();/// alegem ultima pozitie unde mai pot sa pun
Int A=min(D,min(R,X-pus[w]));
D-=A; /// mai am de pus cu A mai putin pentru a obtine F pentru sum[st]
R-=A; /// in total mai pot pune cu A mai putin
P+=A; /// pe intervalu [st,dr] am acum cu A mai mult
pus[wl+=A; /// cele A unitati sunt puse la pozitia w
if(puslwl==X)/// daca acum am deja X la pozitia w elimin pozitia din coada
dqg.pop_back();
3
/// am incercat dar nu am avut de unde
if(D>0)
return false;
}
3
return true;
}
int main()
{
f>>n>>X>>S>>L
for(int i=1;i<=n;i++)
>>v[il;
for(int i=1;i<=L;i++)
sum[1]+=v[il; /// [1...L] sum[i] = suma(v[j]l , j = 1 ... i+L-1
Int hi=sum[1],1lo=0LL;
for(int i=2,j=L+1;j<=n;i++, j++)
{
sum[i]=sum[i-1]+v[jI-v[i-1];
hi+=v[j];
3
hi+=S+1;
while(hi-1lo0>1)
{
Int mi=(lo+hi)/2;
if(ok(mi))
lo=mi;
else
hi=mi;
3
g<<lo;
return 0;
3

169

170

Partea a IV-a

Tabara de pregatire a lotului national
de informatica juniori

Zalau, 22-27 mai 2025

171

Capitolul 12

Barajul 3

12.1 Problema Allp

Propusa de: stud. Andrei Boacd, Facultatea de Informatica, Universitatea ,Al. 1. Cuza” lasi

Un sir de numere naturale sy, sg, 3, ..., S; se numeste palindrom daca s; = s,_;41 pentru orice &
din intervalul [1, k]. Spunem ca un sir de numere naturale sy, So, S3, ..., Sy are proprietatea P daca
elementele sale pot fi reordonate astfel Incat sirul rezultat sa fie palindrom.

Un subsir al sirului aq,ag, as, ..., a, este un sir de forma ay,, ap,, Gp,, ..., ap, cu proprietatea ca

1<p<py<...<pr <.

k

Valoarea unui sir sy, Sq, S3, .., Sk, notata cu val(sy, S, Ss, ..., Sg), este numarul de subsiruri nevide
ale sirului s care au proprietatea P. Doua subsiruri se considera diferite daca indicii selectati sunt
diferiti, chiar daca elementele sunt aceleasi pe toate pozitiile.

Cerinte

Se dau un sir de numere naturale vy, vg, vs, ..., vy si @ Intrebari de forma (I,7). Pentru fiecare
intrebare trebuie sa aflati val(v;, vit1, vit2, ..., v). Deoarece aceasta valoare poate fi foarte mare,
se cere afisarea restului acesteia la Impartirea cu 998 244 353.

Date de intrare

Fisierul de intrare allp.in contine pe prima linie numerele N si (). Urmatoarea linie contine
N numere naturale nenule, elementele sirului v. Urmatoarele () linii contin fiecare cate doua
numere, [si r, conform descrierii din enunt.

Date de iesire

Fisierul de iesire allp.out contine () linii, pe linia 7 afldndu-se raspunsul la cea de a i-a Intrebare
din fisierul de intrare.

Restrictii

« 1< N,Q <108
o 1 <w; <10° pentru orice i (1 <i < N)
e 1 <[<r < N pentru orice intrebare

173

Puncte Restrictii
1 7 1<N<100,1 <Q <5, 7r—1<9 pentru orice intrebare
2 10 1<v; <3, 1< N,Q <400000
3 21 1 <@ x N <5000000
4 12 1 <wv; <100, N <400000, 1 <@ <2000
5 17 1< N,Q <60000
6 15 1< N,Q < 120000
7 18 Fara restrictii suplimentare
Exemple
allp.in allp.out
6 3 5
112324 7
13 19
36
16
Explicatii

Pentru prima intrebare subsirurile cu proprietatea P sunt formate din urmatoarele multimi de

indici: {1}, {2}, {3}, {1,2}, {1,2,3}.

Pentru a doua intrebare subsirurile cu proprietatea P sunt formate din urmatoarele multimi de

indici: {3}, {4}, {5}, {6}, {3,5}, {3,4,5}, {3,5,6}.

12.2 Rezolvarea problemei Allp

Observatie

Un sir are proprietatea P daca exista cel mult un numar cu frecventa impara. Acest lucru se
datoreaza faptului ca un palindrom de lungime para nu poate avea un numar cu frecventa impara,
iar un palindrom de lungime impara are un singur numar cu frecventa impara, cel din mijloc.

Solutia 1

Putem considera pe rdnd fiecare submultime de indici din intervalul [/,] al unui query, numarand
cate astfel de submultimi respecta proprietatea P in forma rescrisa mai sus. Complexitatea acestei
solutii este O(Q- (r—1)-2"71*1), care este suficientd pentru primul subtask. Ea poate fi optimizata
la O(Q - 2"~"*1) daci facem trecerea intre doud submultimi in O(1).

Solutia 2

De acum vom considera numerele ca fiind ,normalizate”, adica vom aduce toate numerele in
intervalul [1, N] si vom nota cu VALMAX valoarea maxima din sir. Vom procesa query-urile
pe rand si pentru fiecare vom determina frecventele numerelor care apar in respectivul interval.
Fie f, frecventa numarului . Numarul de moduri de a selecta un numar par de elemente cu
valoarea z (dintre cele f, disponibile) este egal cu

174

Similar, numarul de moduri de a selecta un numar impar de elemente cu valoarea x este

Ci+C3 +C} +...=2""

Aceste formule sunt consacrate, dar pot fi si deduse prin inductie sau chiar empiric, pe cazuri
particulare de coeficienti binomiali ca (1, 4, 6, 4, 1) sau (1, 5, 10, 10, 5, 1).

Prin urmare, daca selectam un numar pentru a avea frecventa impara, sau daca selectam ca toate

sa aiba frecvente pare, numarul de moduri de a obtine o astfel de configuratie este H 2/2=1 Deci,
xX
raspunsul este [H 2/+=1 . (nrdif +1)] — 1, unde nrdif este numarul de numere distincte (adici cu

T

frecventa nenuld) din intervalul de query. Astfel, putem obtine o complexitate O(VALMAX Q)
care este suficienta pentru primele 4 subtask-uri.

Solutia 3

Observam c4 H2fx_1 — or—tHl=mrdif - Deci, formula finald este 271 L (npdif 4+ 1) — 1.

Deci, pentru ﬁgcare interval trebuie sa calculam cate numere au frecventa mai mare decat 0.
Acest lucru se poate face usor folosind algoritmul lui Mo, obtindndu-se astfel o complexitate
de O((N + Q) - V/N). Aceastd solutie se incadreazd in timp pe toate subtask-urile in afari
de ultimul. Ea poate fi impinsa aproape de 100p cu optimizari ca: citirea rapida; eliminarea
operatiilor modulo; precalcularea puterilor lui 2.

Solutia 4

Pentru a optimiza solutia precedenta, vom grupa query-urile dupa capatul lor dreapta, iterand
apoi prin pozitiile de la 1 la N si mentinadnd intr-un arbore indexat binar/arbore de intervale
valoarea 1 pe pozitiile in In care se afla ultima aparitie a unui numar pana la acel moment,
respectiv 0 In rest. Astfel, numarul de numere distincte dintr-un interval se obtine printr-o singura
interogare de suma pe interval in structura arborescenta. Acest articol detaliaza algoritmul.

Complexitate finala: O((N + Q) - log N).
12.3 Cod-sursa pentru problema Allp

using namespace std;
typedef long long 11;
ifstream fin("allp.in");
ofstream fout("allp.out");
const 11 mod=998244353;

11 n, g, v[400005], nr;
map<l1l,11> nrm;

struct date { 11 1, ind; };
vector<date> myq[400005];
11 so0l[400005];

11 last[400005];

11 pw2[400005];

11 aib[400005];

175

https://proofwiki.org/wiki/Sum_of_Even_Index_Binomial_Coefficients
https://www.geeksforgeeks.org/queries-number-distinct-elements-subarray/

11 1sb(ll x)
{

return x&(-x);

}

void update(ll poz,11 val)
{
for (int i=poz; i<=n; i+=1sb(i)) aib[i]+=val;

}

11 suma(ll poz)
{11 rez=0;

for (int i=poz; i>=1; i-=1sb(i)) rez+=aib[i];
return rez;

3

int main()
{ios_base::sync_with_stdio(); fin.tie(0);
pw2[0]=1;

for (int i=1; i<=4e5; i++) pw2[il=(pw2[i-1]*2LL)%mod;
fin>>n>>q;

vector<ll> vals;
for (int i=1; i<=n; i++)
{
fin>>v[il;
vals.push_back(v[i]);
3
sort(vals.begin(),vals.end());
vals.erase(unique(vals.begin(),vals.end()),vals.end());
for (int i=0; i<vals.size(); i++)
{
nr++;
nrm[vals[i]]=nr;
3
for (int i=1; i<=n; i++) v[il=nrm[v[il];
for (int i=1; i<=q; it++)

{11 1,r;
fin>>1>>r;
myqlr].push_back({1,i});
3

for (int i=1; i<=n; i++)
{

if (last[v[il]!=0) update(last[v[il],-1);
last[v[i]]l=i;
update(i,+1);
for (date p:myql[il)
{11 1=p.1;
11 ind=p.ind;
11 cnt=suma(i)-suma(p.1-1);
11 rez=((cnt+1)*pw2[i-1+1-cnt])%mod;
rez=(rez-1+mod)%mod;
sol[ind]=rez;
}
3
for (int i=1; i<=q; i++) fout<<sol[il<< ;
return 0;

}

176

12.4 Problema Powtop

Propusa de: prof. Ciprian Chesca, Liceul Tehnologic ,Grigore C. Moisil” Buzau

Definim o putere ca fiind un numar natural P cu proprietatea ca exista alte doua numere naturale
A > 1si B> 1 astfel incat P = A® . Exemple de puteri : 8 = 23; 625 = 5%; 7776 = 6°.

Asupra unui un sir de N numere naturale S;, 1 <17 < N, se aplica urmatorul algoritm:

o Termenii sirului S;, 1 <@ < N, se transforma intr-un alt sir cu N — 1 inmultind fiecare doi
termeni consecutivi.
« Se reia operatia anterioara pana cand se obtine un sir format dintr-un singur termen.

De exemplu: S = [1,2,3,4] — [2,6,12] — [12,72] — [864]

Cerinte

Se considera T siruri notate cu X;, 1 <1 <T', de cate N numere naturale fiecare. Pentru fiecare
dintre cele T' siruri X;, 1 < ¢ < T, se aplica algoritmul descris mai sus atat pentru sirul dat cat
si pentru cele N — 1 permutari circulare catre stanga ale sirului X;, 1 <¢ <T.

Sa se determine pentru fiecare sir X;, 1 < ¢ < T, care dintre termenii obtinuti sunt puteri.

Date de intrare

Fisierul de intrare powtop. in contine pe primul rand numerele naturale 7" si NV, iar pe urmatoarele
T linii cate N numere naturale ale sirului X;, 1 <7 <T.

Date de iesire

Fisierul de iesire powtop.out trebuie sa contina 7" linii cu cate N numere de 0 sau 1 fiecare:
0 daca termenul obtinut prin aplicarea algoritmului nu este putere sau 1 daca este putere. Nu-
merele aflate pe aceeasi linie trebuie separate prin cate un spatiu.

Restrictii

e 1< T <100
« 2< N <50
e 1<X,<10",1<i<N

Puncte Restrictii

#
1 40 T=1
2
3

24 2<T <50
36 01 <717 <100

powtop.in powtop.out

- o
(SN
S -
[S AN

177

Explicatie
T =2, N =4 si avem doua siruri: X; = [2,6,3,12] si Xy = [3,8,16,9].

Prin aplicarea algoritmului pentru primul sir se obtine numarul 139968, care nu este putere.
Pentru urmatoarele 3 permutari circulare la stanga se obtin numerele 559 872, 248 832 si 62 208.
Dintre acestea, doar 248 832 = 12° este putere.

Prin aplicarea algoritmului pentru al doilea sir se obtine numarul 56 623104 = 3843, care este
putere. Pentru urmatoarele 3 permutari circulare la stanga se obtin numerele 71 663 616, 2519 424
si 1990656, care nu sunt puteri.

12.5 Rezolvarea problemei Powtop

Solutia 1

Se poate demonstra ca avand un sir S;, 1 < ¢ < N de numere naturale pe care il transformam
succesiv de N — 1 ori intr-un alt sir format din suma oricaror 2 termeni consecutivi ai sirului
precedent, numarul obtinut la final poate fi calculat cu ajutorul unei expresii combinatoriale fara
a mai fi nevoie sa aplicam succesiv cele N — 1 transformari. De exemplu pentru sirul [10, 20, 30]
se obtine succesiunea:

(10,20, 30] — [30, 50] — [80]

Asadar

80 = 30 + 50
=10+20-2+30
=10-C) +20-C5 +30-C2

Prin inductie matematica se poate demonstra ca numarul TOP din finalul aplicarii algoritmului
este egal cu:

TOP=5,-C0 +85-Ch | +---+8,-C'} (12.1)

n

Sa analizam ce se Intdmpla cand schimbam operatia de adunare cu aceea de inmultire. Se
poate observa ca proprietatea de mai sus se transfera exponentilor din descompunerea in factori
primi a fiecarui numar S;.

S& analizam acelasi sir [10,20,30] = [2-5,2% - 5,2 - 3 - 5] dar aplicind operatia de inmultire. Se
obtin succesiv sirurile:

[2-5,22.5,2-3-5] —[2%-5%,2°.3.5%] — [2°.3 .57

Se poate observa ca exponentii respecta proprietatea (12.1):

6 = 1-C9 + 2:C; + 1-C3
= 0-C¢ + 0-C; + 1-C3
4 = 1-C + 1-C5 + 1-CF

178

Asadar se poate calcula valoarea T'OP din finalul aplicarii algoritmului facand o descompunere a
numerelor S;, 1 <7 < N in factori primi si aplicand proprietatea (12.1). Contributia (exponentul)
unui factor prim la produsul final este data de suma exponentilor sai proveniti din toate elementele
vectorului rotit. Produsul final este putere daca cmmdc-ul exponentilor este mai mare decit 1.
De exemplu, 2° - 3* = (23 - 3%)? = 722 este putere, pe cind 2° - 3* nu este putere.

Rezolvarea problemei presupune parcurgerea urmatoarelor etape:

1. Precalcularea combinarilor. Se poate face in mai multe moduri insa cel mai eficient este
cu triunghiul lui Pascal.

2. Precalcularea exponentilor din descompunerea in factori primi a fiecarui numar S;, 1 <
i < N 1n vederea folosirii lor repetate la fiecare permutare circulara.

3. Determinarea exponentilor numarului 7OP pentru fiecare permutare circulara a sirului
dat utilizand expresia (12.1).

4. Determinarea cmmdc al exponentilor anterior calculati pentru a determina daca numarul
TOP este putere.

5. Permutarea circulara catre stanga a sirului 5;, 1 <¢ < N.

Complexitatea solutiei are trei componente:

« Factorizarea celor TN numere. Putem face acest lucru brut, in O(TNvVVALMAX) sau
cu ciurul lui Eratostene in O(VALM AX logVALMAX). Prima metoda este mai eficienta,
mai ales daca colectam in prealabil numerele prime pina la vVALMAX.

 Aflarea factorizarii produsului final. Aceasta necesitd O(T - N? -log N): pentru fiecare test,
pentru fiecare rotatie si pentru fiecare element, procesam fiecare divizor al elementului.

o Testul de putere (aflarea cmmdc-ului exponentilor). Acesta necesita O(TN*log N): pentru
fiecare test, pentru fiecare rotatie si pentru cei O(N log N) factori primi distincti facem o
operatie cmmdc. Stim ca cmmdc-ul face un numar logaritmic de pasi, iar valorile pe care
opereaza (exponentii) provin din combinari de N, deci sint exponentiali in N. De aceea,
teoretic trebuie sa socotim cmmdc-ul ca avind cost O(N).

In practica, dominanta este factorizarea, care merita implementata eficient.

Solutia 2

Iata o solutie diferita, care nu necesita gasirea formulei combinatorice. Calculam produsele in
mod naiv. Intrucit ele vor depasi rapid long long, factorizam termenii sirului si i reprezentam ca
pe liste de perechi (baza, exponent), ordonate dupa baza. Atunci ca sa calculam produsul a doua
numere, trebuie sa interclasam cele doua liste (factorizari). Cind intilnim aceeasi baza in ambele
factorizari, adunam exponentii. De exemplu:

(2%-7%- 11 x (317 13%) = (28 - 31 70 . 111 - 13%)

Astfel, calculam o matrice A de produse de forma triunghiulara. Pe prima linie asezam elementele
sirului, iar A;. = Aj_1. - Aj—141. Atunci, in Ay, vom obtine factorizarea produsului final. Ca
si mai sus, calculam cmmdc-ul exponentilor din aceasta factorizare ca sa decidem daca produsul
este putere.

Aceastd solutie are complexitatea O(T - N* - log N): pentru fiecare test si fiecare rotatie, pentru
fiecare din cele O(N?) produse calculate, interclaseazi doud factoriziri care, spre final, vor ajunge
la O(N log N) factori. Solutia va obtine circa 56 de puncte.

Putem reduce complexitatea daca calculam simultan raspunsul pentru toate rotatiile. Pe fiecare
linie a matricei calculam toate celulele, inclusiv ultima celula, careia ii dam valoarea A;n =

179

Aj—1n-Ai—11. Atunci In cele N celule ale ultimei linii vom obtine exact produsele celor N rotatii.

Aceastd solutie are complexitatea O(T - N3 - log N), egald cu Solutia 1. Ea se comportd bine in
practica, de exemplu pentru ca este greu de construit un vector care chiar sa contina O(N log N)
factori primi distincti.

12.6 Cod-sursa pentru problema Powtop

using namespace std;
ifstream fin()
ofstream fout();
struct numar
{

int x;

int b[lmax];

int e[lmax];

+

11 comb[nmax][nmax], pl[pmax];
numar w[nmax];

11 cmmdc (11l a, 11 b)

{
if (b == 0) return a;
else return cmmdc(b, a%b);
}
void combinari()
{
comb[0]1[0] = 1; comb[1]1[0] = 1; comb[11[1] = 1;
for (int i = 2; 1 <= 50; i++)
{
comb[i][0] = T;
for (int j = 1; j <=1, j++)
comb[i][j] = comb[i-1][j] + comb[i-1][j-11;
3
}

void desc(int n, numar w[nmax])
{11 t, fact, k;
for (int i = 1; i <= n; i++)

{t = wli].x;
k = 0; fact = 0;
while (t%2==0) {t /= 2;fact++;}
if (fact)
{ wlil.b[++k] = 2; w[i].e[k] = fact; }
11 j = 3;
while (j*j <= t)
{
if (t%j==0)
{fact = 0;
while (t%j==0)
{
t /= 3;

180

fact++;

3
if (fact)
{wlil.b[++k] = j; wlil.e[k] = fact; }
3
J+=2;
3
if (t > 1)

{ wlil.b[++k] = t; w[il.e[k] = 1; }
wlil.bfo] = k; wlil.e[0] = k;
}
}

void amplific(numar x, int n, int k)
{
for (int 1 = 1; i <= x.e[0]; i++)
pLx.b[i]] += x.e[il*comb[n][k1;
}

int main()

{int n, i, j, 1, k, T;
11 power;

numar aux;

combinari();

fin >> T >> n;
for (1 = 1;1 <=T; 1++)
{
for (i = 1; i <= n; i++) fin >> wli].x;
desc(n,w);
for (k = 1; k <= n; k++)
{

for (i = 1; i <= n; i++)
for (j = 1; j <= wl[il.b[0]; j++)
plwlil.b[jI1] = 0;

for (i = 1; i <= n; i++)
amplific(w[il, n - 1, i = 1);

power = 0;
for (i = 1; i <= n; i++)
for (j = 1; j <= wlil.b[0]; j++)
if (plwlil.b[31D)
power = cmmdc(power,p[wl[i].b[j1]1);

if (power > 1) fout << 1 << :
else fout << 0 << g

aux = w[1];
for (i = 2; i <= n; i++) wli-1] = w[i];
wln] = aux;
}
fout << g

b

return 0;

181

12.7 Problema Sumgcd

Propusa de: prof. Mihai Bunget, Colegiul National Tudor Viadimirescu Targu-Jiu

Se da un sir A cu N termeni numere naturale nenule. Pentru fiecare termen A;, cu ¢ > 2,
definim B; = max{gcd(A4;, A1), gcd(A4;, As),--- ,gcd(A;, Ai—1)} si S(A) = By + By + --- + By,

unde ged(z,y) este cel mai mare divizor comun al numerelor x si y.

Cerinte

1. Sa se determine S(A).
2. Sa se determine o permutare P a numerelor de la 1 la N pentru care S(C') este maxima,
unde C' este sirul al carui termeni sunt definiti prin C; = Ap, pentru orice ¢ de la 1 la N.

Date de intrare

Pe prima linie a fisierului sumgcd. in se afla numerele 7" si N, unde 7" reprezinta numarul cerintei.
Pe a doua linie se afla N numere naturale nenule reprezentand termenii sirului A.

Date de iesire

In fisierul sumgcd.out se va afisa S(A) pentru T = 1, iar pentru T = 2 se vor afisa termenii
permutarii P, separati prin spatii. Daca exista mai multe solutii, o puteti afisa pe oricare.

Restrictii
« 1 <N L 100000
e« 1< A; <1000000 A
« La cerinta 2, daca S(C) nu este maxima, se acorda punctaj partial egal cu (%) - 50%

din punctajul testului, unde C’ este sirul pentru care S(C’) e maxima.

Puncte Restrictii
1 8 T=1 1< N<1000
2 17 T=1, 1< N <100000
3 18 T=2 1<N<9
4 57 T=2,1<N <100000
Exemple
sumged.in sumgcd.out
15 16
12 7 15 21 20
25 15342
12 7 15 21 20
Explicatie

Pentru primul test avem S(A) = ged(12,7) + ged (15, 12) + ged (21, 7) + ged(20, 15) = 16.
Pentru al doilea test avem permutarea (1, 5, 3, 4, 2) ce corespunde sirului C' = (12,20, 15,21, 7),
iar S(C) = ged(12,20) 4+ ged(20, 15) + ged(12,21) + ged(7,21) = 19.

182

12.8 Rezolvarea problemei Sumgcd

Subtask 1

Pentru a calcula suma S(A) se parcurge sirul A si pentru fiecare element A;, cu¢ > 2, se calculeaza
numarul B; prin parcurgerea sirului A intre indicii 1 si ¢ — 1 si calcularea celui mai mare divizor
corespunzator.

Complexitate O(N?).

Subtask 2

Se determina divizorii numarului A, si se marcheaza cu 1 existenta acestor divizori intr-un vector
de vizitare. Pentru fiecare termen din sirul A, incepand cu al doilea, se determina divizorii acestuia
si se retine cel mai mare divizor care a fost vizitat anterior. Acest divizor se adauga la suma S(A)
si se actualizeaza vectorul de vizitare cu toti divizorii termenului curent.

Determinarea divizorilor lui A; se poate face fie prin parcurgerea numerelor de la 1 la \/A; si
verificarea daca acestea divid pe A;, fie prin determinarea factorilor primi din descompunere si
generarea divizorilor prin metoda backtracking.

Complexitate O(N - v/V) sau O(V - logV) in functie de metoda de determinare a divizorilor
fiecarui termen al sirului A, unde V' este valoarea maxima a valorilor termenilor din sirul A.

Subtask 2 - solutie alternativa

Observatie: sa presupunem ca valoarea X apare in A pe pozitiile 41, 4o, ..., (pozitii in ordine
crescatoare). Atunci By,, B, ..., B;, vor fi toate egale cu X. Cu alte cuvinte toate aparitiile
valorii X In vector vor avea B; asociat egal chiar cu X, mai putin prima aparitie.

De aceea vom calcula doar valorile din vectorul B ale primelor aparitii ale valorilor din A. Pentru
aceasta vom retine intr-un vector caracteristic P[] indicele primei aparitii ale valorilor din A.
Astfel P[X] = indicele primei aparitii ale valorii X.

In continuare vom folosi un algoritm tip ciur al lui Eratostene. Pentru fiecare valoare X din ciur
vom parcurge valorile D = X,2X,3X, ..., etc. Pentru fiecare valoare D ne intrebam daca exista
printre valorile de la intrare consultand vectorul P[]. Vom retine doua lucruri: numarul K de
valori D care apar in A precum si M, indicele minim al aparitiei unei valori D.

Daca K este cel putin 2 Inseamna ca vom avea valori la intrare al caror numar B este cel putin X
si marcam acest lucru. Mai exact, pentru toate valorile D gasite in A mai putin cea de la indicele
M vom marca B asociat ca fiind X.

La final nsumam valorile B. Complexitate: O(N + VlogV). Iatda pseudocodul, considerand
vectorul A citit:

Algoritmul 1: Calcul vector caracteristic P

Initializeaza P[] la zero
for : < 1 to N do
if P[A[i]] = 0 then

| PIA[]] i
_ Bli] + Al

183

Algoritmul 2: Calcul vector B]

Initializeaza B]| la 1
V' < maximul valorilor din A
for X + 2toV do
K<+ 0 > numarul de numere din A divizibile cu X
M+ N+1 > indice minim al unui numar divizibil cu X (initial infinit)
for D + X to V cu pas X do
if P[D] > 0 then
K+ K+1
if P[D] < M then atunci
| M« P[D)
if K > 1 then > reparcurgem valorile D
for D «+— X to V cu pas X do
L if P[D] > 0 si P[D] > M then
. BIP[D]|+ X

Algoritmul 3: Calcul suma B

S < suma valorilor din B

Subtask 3

Cum N are o valoare mica se poate folosi metoda backtracking pentru generarea permutarilor
sirului A (sau next_permutation din STL) si calculul pentru fiecare permutare a numarului S(A).

Complexitate O(N! - log V).

Subtask 4

Faptul ca pentru fiecare termen A;, cui > 2, trebuie sa gasim un termen anterior care maximizeaza
cel mai mare divizor comun ne sugereaza ca fiecare termen ,se leaga” de un termen anterior, ceea
ce indica existenta unei structuri arborescente.

Aceasta intuitie este corecta. Putem reprezenta sirul ca pe un graf complet cu /N noduri in care
fiecirui termen ii corespunde un nod, iar costul pe muchia (A,, A,) este —cmmdc(A,, 4,). In
acest graf, un arbore partial de cost minim (APM) va consta dintr-o colectie de muchii care
minimizeaza suma cu minus a cmmdc-urilor, asadar va maximiza suma cmmdc-urilor.

Astfel se poate aplica algoritmul lui Kruskal sau Prim pentru a determina arborele partial de cost
minim.

Implementare cu Algoritmul lui Kruskal

Se determina mai Intai divizorii numerelor din sirul A si pentru fiecare divizor se formeaza o lista
cu indicii termenilor care au acest divizor.

Initial fiecare termen al sirului A se considera ca facand parte dintr-o multime cu un element,
acesta fiind considerat radacina unui arbore. Se parcurg descrescator valorile de la V' la 1 (acestea
fiind posibile costuri ale muchiilor) si, pentru fiecare valoare, daca in lista corespunzatoare se afla
cel putin doua noduri se adauga o muchie intre primul nod din lista si oricare alt nod din lista
numai in cazul in care cele doua noduri fac parte din multimi (subarbori) diferite. De fiecare

184

datd se adauga la suma S(A) valoarea muchiei si se unesc cele doua multimi (subarbori) prin
subordonarea radacinii unui subarbore la radacina celuilalt.

In momentul in care au fost adaugate N — 1 muchii si corespunzator costul muchiei la suma S(A)
atunci se obtine valoarea maxima a acestei sume.

Complexitate O(V - log V).

Implementare cu algoritmul lui Prim

Algoritmul lui Prim este un Greedy pe care il putem intui natural si daca nu gasim reducerea
formala la APM. Initializam permutarea cu orice element, apoi de N — 1 ori adaugam la permu-
tare acel element care maximizeaza cmmdc-ul intre elementele deja alese (cele din permutare) si
cele Inca nealese. Aceasta este fix ideea algoritmului lui Prim, care pentru grafuri clasice se im-
plementeaza cu heap-uri. Numim elementele alese ,,jumatatea stanga”, iar numerele inca nealese
,jumatatea dreapta’.

Pentru problema de fata mentinem, pentru jumatatile stanga si dreapta, doua structuri de date
similare. Pentru fiecare divizor d, tinem minte un contor: cate numere din multime se divid cu
d. Atunci, prin definitie, cnmdc-ul maxim intre cele doua jumatati este d-ul maxim care are un
contor nenul in ambele jumatati. Apar, deci, trei nevoi:

1. Sa gasim rapid d-ul maxim.
2. Sa gasim un numar x din jumatatea dreapta care se divide cu d.
3. Sa-1 mutam pe z in stanga.

Pentru (2), este suficient sa tinem, pentru fiecare divizor d, lista elementelor din dreapta care
sunt multipli de d. Memoria este O(N log N), acceptabila.

Pentru (3), trebuie sa iteram prin divizorii lui z (de exemplu recursiv), sa decrementam contoarele
din dreapta si sa le incrementam pe cele din stanga.

Pentru (1), sa observam ca in stdnga contoarele doar cresc, iar in dreapta doar scad. Atunci
putem mentine un AIB sau un arbore de intervale care stocheaza 1 pe pozitiile d unde contoarele
sunt pozitive in ambele jumatati. Cand mutam primul multiplu de d din dreapta in stanga, scriem
1 in AIB pe pozitia d, iar cand mutam ultimul multiplu de d, scriem 0 in AIB pe pozitia d. Cu
aceasta informatie, raspunsul la (1) este dat de pozitia maxima a unui 1 in AIB, pe care o putem
gasi cu o cautare binara in O(log MAX_V AL).

12.9 Cod-sursa pentru problema Sumgcd

using namespace std;

ifstream f("sumgcd.in");

ofstream g("sumgcd.out");

int t, n, m, x, y, i, j, Vmax, no;

int p[N], a[NI, viz[NJ], bif[N], gr[N], ta[NI, vizit[NI, pr[1201]1, b[NI;
vector<int> vec[N], arb[N], diviz[N];

void divizori()

{
int i, j, w, h, r, q, u;
no = 0;
for (i = 2; i <= 1200; i++)
if (pLil==0)

185

no++;
prino] = i;
j = i+i;
while(j <= 1200)
{
plil = 1;
Jj = j+i;

}

for(i = 1; i <= n; i++)
if(vizit[a[i]]==0)

{
w = alil;
vizitlal[il] = 1;
diviz[w].push_back(1);
vec[1].push_back(i);
for(j = 1; prljl*prljl <= w; j++)
if (wkpr[j1==0)

{

h = prljl;

r=1;

g = diviz[al[il]l.size();
while(w%h==0)

{

r = rxh;

for(u = 0; u < q; utt)

{
diviz[al[il]l.push_back(diviz[al[i]l[ul*r);
vec[diviz[al[i]][ul*r].push_back(i);

}

w = w/h;

3

}

if(w > 1)
{

q = diviz[alil]l.size();

for(u = 0; u < q; utt)

{
diviz[a[iJ].push_back(diviz[al[ill[ul*w);
vec[diviz[al[i]][ul*w].push_back(i);

}

}
}

else for(u = 0; u < divizl[al[ill.size(); ut+)
vec[diviz[al[i]][ul].push_back(i);
}

void solvel()
{
int h,i,j,m;
long long s;
for(i = 0; i < diviz[a[1]].size(); i++)
viz[diviz[a[1]1[il] = 1;

s = 0;

for(i = 2; 1 <= n; i++)

{
m= 0;
for(j = 0; j < diviz[a[ill.size(); j++)
{

186

h = diviz[a[i]1[j];
if((viz[hl==1)and(h > m)) m = h;

viz[h] = 1;
}
s += m;
}
g << s << ;
}
void dfs(int nod)
{
g << nod << :
bif[nod] = 1;
for (int h = 0; h < arb[nod].size(); h++)
if (bif[arb[nod][h]]==0) dfs(arbl[nod][h]);
}

void solve2()

{
int h,u,nr,nrgr,e,w,z,c,s;
long long suma;

for (h = 1; h <= n; h++)
{
grfh] = h;
bCh] = 1;
}
nr = 0; suma = 0;
for (h = 1000000; h >= 1; h--)
if ((vec[h]l.size() > 1)and(nr < n-1))

{
x = vec[h][0];
u = x;
while (u != 0)
{
= talul;
3
for (c = 1; ¢ < vec[h].size(); c++)
{
y = vec[h][c];
W=y,
while (w != 0)
{
S = w;
= talwl;
3
if (s !=e)
{
if(b[sl<ble]) bl[e] += b[s];
else
{
bls] += blel;
swap(s,e);
3
nr++;
suma += h;

arb[x].push_back(y);
arbly].push_back(x);
tals] = e;

u = Xx;

187

while (u != e)

{
z = talul;
talu] = e;
u=z;

}

u=y,

while (u != e)

{
z = talul;
talul = e;
u=z;

}

}
3
3
dfs(1);

int main()

f >> t > n;
for (i = 1; i <= n; i++)
{
f >> alil;
if (alil > Vmax) Vmax = al[il;
3
divizori();
if (t==1) solvel();
else solve2();
return 0;

188

Capitolul 13

Barajul 4

13.1 Problema Casuta

Propusa de: stud. Victor Botnaru, Facultatea de Automatica si Calculatoare, Universitatea
Politehnica Bucuresti

Gigel vrea sa isi construiasca o casuta in Bucuresti. El vrea sa aleaga o amplasare si o forma
buna pentru fundatia casei.

Pentru simplitate, consideram Bucurestiul ca fiind un patrat cu latura de N metri, situat intr-un
sistem de coordonate cartezian, avind coltul stdnga-jos in punctul (0,0), si coltul dreapta-sus in
punctul (N,N).

Gigel, excentric de fel, vrea ca forma fundatiei casutei sa fie una aparte, anume, trebuie sa respecte
urmatoarele conditii:

» Forma este un triunghi dreptunghic, avand catetele paralele cu axele sistemului si coltul
drept pozitionat in dreapta-jos.

« Varfurile formei au coordonatele intregi.

o Lungimea catetei orizontale este un multiplu al lungimii catetei verticale.

In Bucuresti, unele zone sunt mai valoroase decat celelalte. Mai simplu, Gigel cunoaste pentru
fiecare metru patrat din Bucuresti daca acesta este valoros sau nu, prin intermediul unei matrice
binare V', de dimensiuni N x N. Elementul V;; are valoarea 1 sau 0 dupa cum aria acoperita
de patratul cu coltul stdnga-jos (j — 1, @ — 1) si coltul dreapta-sus (j,7) este sau nu valoroasa.
Numerotarea liniilor, respectiv a coloanelor incepe de la 1.

Definim valoarea unei forme ca fiind suma ariilor intersectiilor dintre forma si fiecare patrat valoros
din Bucuresti.

Cerinte

Se dau T' variante de fundatie care respecta conditiile impuse de Gigel. Pentru fiecare, afisati
valoarea formei acesteia.

Date de intrare

Pe prima linie a fisierului casuta.in se afla doua numere, N si 7', cu semnificatia din enunt.
Urmeaza N linii a cate N cifre de 1 sau de 0, fara spatii intre ele, valorile matricei V', indexate

189

de la 1. Pe urmatoarele T linii se afla cate patru intregi, X1, Y7, Xo, Y5, reprezentand coordonatele
varfurilor ipotenuzei unei variante de fundatie.

Date de iesire

In fisierul casuta.out se va afisa cate un numar real pe fiecare dintre cele 7" linii, anume valoarea
acelei forme. Numerele trebuie afisate cu 5 zecimale exacte.

Restrictii

« 1< N <1000

« 1 <7 <1000000

e 0< X1 <Xo<N,0<Y; <Yy <N, pentru toate formele din intrare.

« Fie £ lungimea celei mai mari catete verticale, si fie A suma ariilor tuturor formelor din
intrare.

Puncte Restrictii
10 Viljl=11<ij<N
10 1 <A <5.000.000
10 1 <7 <5.000
10 L=1,1<N <300
10 1 <N <300
20 L=1

30 Fara restrictii suplimentare.

N|o|o| ks |w| |~ |Fk

casuta.in casuta.out
53 1.00000

10000 0.25000
01010 0.16666

Explicatie
Exemplul corespunde diagramei de mai jos. Cu mov am notat patratele de arie valoroasa.
13.2 Rezolvarea problemei Casuta

Subtaskul 1

Daca toata matricea este valoroasa, atunci intreaga arie a fiecarui triunghi este valoroasa, deci
trebuie doar sa tiparim, pentru fiecare triunghi, valoarea

190

5
4 //
3
2
1
o 1 2 3 4 5 Ox

(22 — 21)(y2 — ¥1)
2

Subtaskul 2

Daca aria tuturor triunghiurilor este mica, ne permitem sa calculam, pentru fiecare celula din
submatricea acoperita de triunghi, aria acelei celule, care fie va fi complet acoperita, fie va avea
forma unui trapez.

Subtaskul 3

Urmatoarele subtaskuri necesita precalcularea sumelor partiale in V', pe linii, pe coloane sau pe
doua dimensiuni, dupa caz. Acestea ne ofera in O(1) valoarea unui dreptunghi de marime k x 1,
1 x k, respectiv ky X ks.

De asemenea, in toate subtaskurile urmatoare vom defini panta unui triunghi ca fiind (zo —
x1)/(y2 — y1), invers decdt in sensul strict geometric.

Daca T este suficient de mic, ne permitem o abordare in O(T'N), mai exact O(suma_ lungimilor).
Pentru un triunghi dat, baleiem x de la 2, la 25 si adaugam la raspuns aria valoroasa pe coloana
[z —1,z]. Aceasta coloana consta dintr-o coloana de patrate (pentru care avem precalculata suma
valoroasa) si dintr-un trapez inclus intr-o celuld a matricei.

Aceasta implementare poate trece si alte teste, in functie de eficienta. Iata, de exemplu, o rutina
care nu efectueaza decat doua impartiri per triunghi, una pentru a afla panta si una la final,
pentru a calcula aria.
double query(int x1, int y1, int x2, int y2) {

const int slope = (x2 - x1) / (y2 - y1);

int r_area = 0;

int t_area Q;

191

for (int x = x1, y = y1; x < x2; x += slope, y++) {
for (int frac = 0; frac < slope; frac++) {

int right_x = x + frac + 1;
r_area += coll[yllright_x] - collyl]l[lright_x1;

int rich = colly + 1]1[right_x]1 - collyl[right_x1;
t_area += (frac *x 2 + 1) * rich;

3
3

return r_area + t_area / (2.0 * slope);

}

Subtaskurile 4 si 6

Sa vedem cum putem calcula in O(1) valoarea unui triunghi de inaltime 1. Vom exemplifica pe
un caz particular (zo — x; = 5) pentru a nu incarca formulele.

Cele 5 trapeze au ariile 1/10, 3/10, 5/10, 7/10 si 9/10. Valoarea triunghiului este insa data de
suma produselor dintre aceste arii si celulele corespunzatoare din matrice. Pentru concizie, fie
C1,Ca, ..., C, valorile matricei V' pe linia y5 (linia cu triunghiul). Atunci dorim sa calculam:

1
2.5 “(1-cpg1 +3 Coppa+5-Coy3+ T Copya +9-Cpy)

Acum, sa spunem ca triunghiul este asezat la z; = 4.

Oy

n

x2 x4 x6 x8 x10 x12 x14 x16 x18 x20

x T2

Sa precalculam pe linia curenta, pe fiecare coloana z, suma

192

Se=2-c14+4-co+---+2-x-¢

Atunci S,, — S, este o suma pe intervalul acoperit de triunghi. Aceasta suma este, pe toate
pozitiile, mai mare cu 9 (= 2(zy — x1) — 1) decit aria valoroasa dorita. De aceea, putem scadea
de 9 ori aria valoroasa a dreptunghiului (z1,y1) — (22, y2).

Subtaskurile 4 si 5

Acum putem aborda si triunghiurile de inaltime mai mare decat 1. Cand N este suficient de mic,
ne permitem o solutie in O(T + N?). Si consideram triunghiurile in ordinea pantei (le putem
sorta in timp liniar deoarece exista cel mult N pante distincte). Pentru o panta fixata p si pentru
fiecare punct (x,y) sa calculam valoarea totala a triunghiurilor de p x 1 care incap in matrice la
stanga lui =, precum si a dreptunghiurilor de sub ele (asadar, valoarea unui trapez maximal).

Oy

Y2

n

I T2 OI

Putem calcula aceastd matrice iIn O(N?). Valoarea trapezului care se termini la (x,y) provine
din:

e valoarea triunghiului (z —p,y — 1) — (x,y);
o valoarea dreptunghiului (z — p,0) — (z,y — 1);
« valoarea trapezului anterior, care se termina la (z —p,y — 1).

Atunci putem calcula valoarea unui triunghi cu panta p in O(1) ca fiind:

o valoarea trapezului care se termina la (xs, ys);
« minus valoarea trapezului care se termina la (z1,y;);
« minus valoarea dreptunghiului (x1,0) — (22, y1)

Subtaskul 7

Cand N este suficient de mare, tratam triunghiurile diferit dupa cum panta lor este mai mare
sau mai mica decat o panta P = O(v/N). In practica orice valoare a lui P intre 25 si 64 poate
obtine punctaj maxim.

Cand panta este micd, procedam ca la subtaskul anterior si obtinem complexitatea O(T+ N?v/N)
pentru toate triunghiurile care au pante mici.

Cand panta este mare, remarcam ca fiecare triunghi se compune din cel mult N /P triunghiuri
de inaltime 1, deci putem Insuma, folosind teoria de la subtaskul 6, toate aceste triunghiuri si
dreptunghiurile de sub ele, in O(v/ N) per interogare.

193

Rezultd o complexitate totald de O((T + N?)v/N).

13.3 Cod-sursa pentru problema Casuta

using namespace std;

const int maxs = 32;

const int maxn 1005;

const int maxq = 1e6+5;

const long long precizion = Te5;

int scara_sum[maxn][maxn];

int prefix_sum[maxn][maxn];

int trapez_sum[maxn][maxn];

long long ans[maxql;

int x_onelmaxql, y_onelmaxql, x_two[maxql, y_twol[maxql;
int pantalmaxql, srtlmaxql;

int n, t;

bool v[maxn][maxn];

static bool cmp(const int a,const int b)

{
return pantalal<pantalbl];
}
int get_rectangle_sum(int st, int dr, int h)
{
return prefix_sum[h][dr]-prefix_sum[h][st];
}
int get_triangle_sum(int st, int dr, int h)
{
int ans=scara_sum[h][dr]-scara_sum[h][st];
int drept= prefix_sum[h][dr]-prefix_sum[h][st]-
prefix_sumCh-1]1[drJ+prefix_sum[h-1][st];
ans-= (2*st) * drept;
return ans;
}

void do_trapez_sum(int panta)
{
for (int i=1; i<=n; i++)
for (int j=1; j<=n; j++)
trapez_sum[i][j]=0;
for (int i=1; i<=n; i++)
for (int j=panta; j<=n; j++)
{
int tri= get_triangle_sum(j-panta,j, i);
int drept = get_rectangle_sum(j-panta, j, i-1);
drept=drept*2xpanta;
trapez_sum[i][j]=trapez_sum[i-1][j-pantal + tri + drept;

194

int main()

{

freopen(, , stdin);
freopen(, , stdout);

cin.tie(@); cout.tie(0);
ios::sync_with_stdio(0);

cin>>n>>t;
string s;
for (int i=1; i<=n; i++)
{
cin>>s;
for (int j=1; j<=n; j++)
{
v[il[jI=(s[j-11=="1");
scara_sum[il[jl=scara_sum[i]J[j-1]+(2*j-1)*xv[il[j];
prefix_sum[i][j]= prefix_sum[i-1][jJ+prefix_sum[i][j-1]-
prefix_sum[i-11[j-11+v[i][j];
}
3

for (int i=1; i<=t; i++)
{
cin>>x_one[i1>>y_one[i]>>x_two[i]>>y_twol[il];
pantali]= (x_two[iJ-x_one[i])/(y_two[iJ-y_onel[i]);
srt[il=i;

b

sort(srt+1,srt+t+1,cmp);

int i=1;
while (i<=t&&pantal[srt[i]]l<=maxs)
{
if (i==1|| pantalsrt[i-1]] != pantalsrt[il])
do_trapez_sum(pantalsrt[i]l]);

int j=srt[il;

ans[jl=trapez_sum[y_two[j]11[x_two[jl] - trapez_sum[y_one[j]]1[x_one[j1];

ans[jl=ans[j]l-(2*pantal[j])*get_rectangle_sum(x_one[j],x_two[j],y_one[jl);

ans[jl*=precizion;

ans[jl/=(2*pantaljl);

1++:

’

}

for (; i<=t; i++)
{
int j=srt[il;
int my_x = x_one[j];

int my_y = y_one[j];

ans[j] = 0;

while (my_y < y_two[j1)
{

int my_tri = get_triangle_sum(my_x, my_x + pantal[j], my_y+1);
int my_square = get_rectangle_sum(my_x, my_x+pantalj], my_y);
my_square -= get_rectangle_sum(my_x, my_x+pantaljl, y_one[jl);
ans[j] += my_square * 2 * pantalj] + my_tri;

195

my_y++;
my_x+=pantalj];
}
ans[j] *= precizion;
ans[j1/=(2xpantaljl);
}
for (int i=1; i<=t; i++)
printf("%11d.%0511d\n",ans[i]/precizion, ans[il%precizion);
return 0;

196

13.4 Problema Nrk

Propusad de: stud. Alin-Gabriel Raileanu, Facultatea de Informaticd, Universitatea ,,Alexandru
Toan Cuza” lasi
prof. Ionel-Vasile Pit-Rada, Colegiul National Traian, Drobeta Turnu Severin

Se dau 4 numere naturale N, K, A, B.

Cerinte

Sa se determine cel mai mare numar format din /V cifre, obtinut prin alipirea a K numere distincte

din intervalul [A, BJ.

Date de intrare

Fisierul de intrare nrk.in contine pe singura linie cele 4 numere N, K, A, B, separate prin cate

un spatiu.

Date de iesire

Fisierul de iesire nrk.out contine o singura linie pe care este scris numarul cerut.

Restrictii

e 1<K < N<200
e 1< A< B <10%0

» Se garanteaza ca pentru datele de test exista solutie.

Puncte Restrictii
1 5 B—-—A<10,1<A<B<500
2 6 K=2,1<A<B<1000
3 11 A si B au acelasi numar de cifre.
4 14 K=31<A<B<10°
5 64 Fara restrictii suplimentare.
Exemple
nrk.in nrk.out Explicatii
43829 9829 Se alipesc numerele 9, 8, 29, in aceasta
ordine.
11 4 4 2397 99999998997 Se alipesc numerele 99, 999, 998, 997.
12 3 500 10000 999999989997 Se alipesc numerele 9999, 9998, 9997.

13.5 Rezolvarea problemei Nrk

Solutia oficiala - Programare dinamica

Nota: Pentru obtinerea raspunsului corect intr-o complexitate timp decenta, este necesara co-
lectarea numerelor care pot ,,candida” la un loc in raspuns, iar apoi sortarea acestora.

197

Sortarea reprezinta elementul-cheie in cadrul acestei solutii, intrucat in functie de criteriul folosit,
se pot obtine rezultate diferite.

Criteriul corect de ordonare a doua siruri = si y este: x < y daca si numai daca z @y <y Dz,
unde x @ y denota concatenarea numerelor x si y in ordinea aceasta.

Intuitie: Cand rescriem criteriul d.p.d.v. matematic, obtinem:

TQY<Lydzr <
z-10M +y <y 100 + 2 =
xr < Yy
10l —1 = 101 — 1

criteriu in care fiecare numar este independent. Prin |z| ne referim la lungimea numarului z.

Evident, putem sorta folosind acest criteriu toate numerele naturale din intervalul [A, B], dar
asta ar duce la TLE din pricina volumului mare.

Observatie: Din fiecare grupa de dimensiune a numerelor (10¥ < z < 10¥*!) ne intereseaza doar

cele mai mari % numere (in cazul in care exista). Daca selectam mai multe, depasim N cifre in

total, deci nu vom folosi numerele selectate in plus.

Colectam aceste numere intr-un vector V', pe care il sortam descrescator. Acum avem o ordonare
favorabila a numerelor, ceea ce inseamna ca orice solutie va fi un subsir de lungime K al lui V' cu
suma lungimilor numerelor egala cu N.

In continuare vom utiliza urmatoarea structura de programare dinamica:

dp[s][i][j] = cel mai mare numar de lungime i care se poate obtine prin alipirea a j numere
distincte dintre primele s

Pentru a adauga fiecare numar V[s| = NR in structura vom utiliza urmatoarea recurenta:

for s < 1 to lungime(V') do
dp[s] < dp[s — 1] > atribuire de matrice, in caz ca nu folosim NR
for i < N to |[NR| do
L for j < kto1ldo
- dpls][i][j] max{dp[s][][j], dp[s — 1)[i — [NR[][j — 1] & NR}

In practica, ne dam seama ca nu ne este necesara o matrice tridimensionala dp, ci ne este suficient
un singur strat in care adunam, pe rdnd, fiecare V[s]. In final, complexitatea algoritmului descris
mai sus se calculeaza astfel:

o Partea de selectare: In total vom selecta cel mult S2/=V X = O(N -log N) numere. Suma

lungimilor numerelor va fi O(N?), cici la fiecare lungime ne oprim cand depasim N cifre
colectate. Generarea numerelor presupune decrementari in O(1). Astfel complexitatea este
O(N?).

o Partea de sortare: O(N?-log N -log(N -log N)) = O(N?-log® N). Aceasta deoarece sortim
un vector cu N’ = Nlog N numere facand O(N'log N') comparatii, iar fiecare comparatie
dureaza O(N).

« Programarea dinamici: O(K - N3 - log N). Aceasta deoarece completdm o matrice de
dimensiuni NVlog N x N x K, iar completarea fiecarei celule necesita o comparare de siruri.

198

Complexitatea timp finald va fi O(K-N3-log N), mult amortizata din pricina lungimilor numerelor.

Complexitatea memorie va fi O(N?(K +log N)): un vector de O(N log N) siruri de lungime O(N')

si matricea dp care retine N - K siruri de lungime O(N).

Optimizare: Pentru a reduce complexitatea timp, se pot mentine coduri hash pentru prefixele
numerelor, astfel compararea se poate face prin cautare binara pe rezultat in O(log [N R|), fapt

care duce la o complexitate timp de O(K - N? - log® N).

13.6 Cod-sursa pentru problema Nrk

const int NMAX=205;

using namespace std;
ifstream cin();
ofstream cout(K

string dp[NMAX][NMAX];

bool cmp(string a, string b)

{

}

return (atb)>(b+a);

string solve_dp(vector <string> v, int n, int k)

{

3

sort(v.begin(), v.end(), cmp);
int cnt=0, i, j;
for(i=0; i<=n; i++)

{
for(j=0; j<=k; j++)
{
dplilljl1=" ";
3
}
dpL@][0]="";
for(auto s:v)
{
cnt++;
for(i=n; i>=(int)s.size(); i--)
{
for(j=min(k, cnt); j>=1; j--)
{
if(dpli-s.size()1[j-1]1t="")
{
dplil{jl=max(dpl[il[j], dpli-s.size(D1[j-1]+s);
}
}
}
3

return dp[nl[k];

void dif(string& s)

199

int poz=s.size()-1;
while(s[poz]=='0"') s[poz--1='9"';
s[poz]--;

vector <string> form(int n, int k, string a, string
{

vector <string> ans;

int sz, cnt;

for(; b.size()>a.size();)

{
sz=b.size();
cnt=min(k, n/sz)+1;
while(cnt-- && (int)b.size()==sz)
{
ans.push_back(b);
dif(b);
}
if((int)b.size()==sz)
{
for(auto &i:b) i= :
b.pop_back();
}
}

sz=b.size();
cnt=min(k, n/sz)+1;
while(cnt--)

{
ans.push_back(b);
if(al=b) dif(b);
else break;
3
return ans;
}
int main()
{
int n, k;
string a, b;
vector <string> v;
cin>>n>>k>>a>>b;
v=form(n, k, a, b);
cout<<solve_dp(v, n, k)<< o
return 0;
}

200

13.7 Problema Passepartout

Propusa de: instr. Cristian Francu, Nerdvana Bucuresti

Passepartout face inconjurul lumii, care este reprezentata simplificat ca o banala matrice A cu
N x N pozitii. Fiecare pozitie contine numarul tarii din care face parte, intre 1 si M, unde M
este numarul de tari. Tarile sunt contigue: el poate ajunge din orice punct al unei tari in orice
alt punct al acelei tari, deplasandu-se pe orizontala sau pe verticala doar prin pozitii ale acelei
tari. Unele pozitii din matrice nu apartin niciunei tari: ele contin numarul 0.

Passepartout pleaca din coltul de sus-stanga, ce nu apartine niciunei tari, si se deplaseaza
pe orizontald sau pe verticala cu scopul de a vizita toate tarile, In ordinea crescatoare a
numarului de tara. El poate trece oricand prin orice tara (inclusiv prin pozitii cu numarul 0),
dar considera tara ca vizitata doar daca a vizitat toate tarile cu numar mai mic. Cu alte cuvinte
Passepartout trebuie sa viziteze, pe rand, o pozitie a tarii 1, apoi o pozitie a tarii 2, si asa mai
departe pana la o pozitie a tarii M.

Cerinte

Sa se calculeze lungimea minima a unui drum al lui Passepartout.

Date de intrare

Prima linie a fisierului de intrare passepartout.in contine N si M, respectiv numarul de linii si
de coloane ale matricei si numarul de tari. Urmatoarele NV linii contin cate N numere ce semnifica
tara din care face parte acea pozitie. O pozitie ce nu apartine niciunei tari este codificata cu 0.

Date de iesire

Fisierul de iesire passepartout.out va contine lungimea drumului minim pe care il va parcurge
Passepartout pentru a vizita toate tarile in ordinea numarului de tara.

Restrictii

« 5 < N <1000

e 1 <M <min(150,N x N —1)

e 0<A; <M

In interiorul unei tari se poate ajunge din orice punct in orice alt punct.

Se garanteaza ca exista M tari pe harta (fiecare numar de la 1 la M apare cel putin o data
in matrice).

201

Puncte Restrictii
1 3 M=1
2 4 M=2
3 5 M=3
4 6 N <13
5 11 N <230
6 21 N <680
7 29 N < 850
8 21 Fara restrictii suplimentare.
Exemple
passepartout.in passepartout.out Explicatii
5 4 8 Drumul lui Passepartout este cel marcat cu
g1 111 verde si rosu. Remarcati ca el trece de
2 1 1 2 3 doua ori prin pozitia marcata cu rosu (a
B 5 - o doua si a patra pozitie vizitata).
44333
5 4 10 Drumul lui Passepartout este cel marcat cu
03332 verde.
43322
44322
10332
11122
89 28 Drumul lui Passepartout este cel marcat cu
Q6666444 verde.
16788844
17799444
11779445
17799955
17229555
12233555
11223355

13.8 Rezolvarea problemei Passepartout

Definim distanta Manhattan intre doua pozitii din matrice, (Ly,C}) si (Lg, C2) ca fiind |Ly —
Ly| +|Cy — C|, unde |A| este valoarea absoluta a lui A.

Subtaskul 1

Céand avem o singura tara raspunsul este distanta Manhattan de la (1, 1) la cea mai apropiata
valoare 1, la care se adaugd 1 pentru pozitia de pornire. Complexitate O(N?) timp si memorie.

Subtaskul 2

Cand avem doua tari, putem calcula distanta pana la tara 1 conform primului subtask. Apoi,
pentru fiecare valoare 1, calculam distanta la cel mai apropiat 2. Pentru aceasta putem folosi un

202

algoritm BFS in matrice (zis si Lee) cu multiple puncte de pornire in toate valorile 2. Pe masura
ce atingem valori 1 marcam distantele.

In final raspunsul este minimul sumei celor doua distante pentru toate valorile 1. Complexitate
O(N?) timp si memorie.

Subtaskul 4

Cand N este foarte mic putem folosi o parcurgere in adancime, similara cu un backtracking, dar
care nu esueaza: parcurgem, pe rand fiecare pozitie 1. Pentru fiecare pozitie 1, incercam fiecare
pozitie 2 si asa mai departe. Complexitate O((N?/M)M) ca timp, O(N?) memorie.

Subtaskul 5

O solutie de complexitate O(N?®) sau O(N* x M) ar trebui s& ia punctele acestui subtask. Iata
o solutie O(N* x M): Pentru fiecare tard 2 < K < M si pentru fiecare pereche de coordonate
(L1, Ch) si (L2, Cy), daca (Ly,Cy) apartine tarii K — 1, iar (Lg, Cy) apartine tarii K, atunci
incercam sa imbunatatim distanta pana la (Lg, Cy) prin (L, Ch).

Subtaskul 6

Sa presupunem ca am calculat lungimile minime ale drumurilor pana la toate pozitiile tarii K — 1.
Dorim sa calculam minimele pentru pozitiile tarii K. Pentru fiecare pozitie (L, C') unde avem o
valoare K vom calcula:

DIL][C] = min{D[L;][C;] + |L — Li| + |C — C;|}

unde (L;, C;) sunt pozitiile in matrice ale tarii K — 1.

Pentru o implementare de complexitate O(N*/M) va trebui si colectdm pentru fiecare tara
pozitiile unde apare valoarea ei in matricea initiald.

Aceasta solutie va lua punctaj partial. Pentru a lua toate punctele acestui subtask observam ca
nu este necesar sa luam in considerare toate pozitiile unei tari, ci doar cele de pe frontiera.

O alta imbunatatire este ca, la fiecare trecere de la tara K — 1 la tara K, sa luam In considerare
doar punctele din tara K — 1 ce au valori minime ale drumului, relativ la vecinii lor. Aceste
~puncte speciale” sunt suficiente deoarece orice drum de la o alta pozitie din tara K — 1 la orice
pozitie din tara K poate fi ajustat ca sa treaca printr-un punct special. Aceasta optimizare va
trece si teste din subtaskul urmator.

Subtaskul 7

Putem géndi problema putin diferit: am putea aplica BFS pe matrice (zis si Lee). Dar cum
procedam céand, in parcurgere, ajungem la tara 17 Am putea sa calculam distantele la tara 1,
apoi sa reluam un Lee modificat, in care pornim cu lungimile drumurilor sortate crescator. Cand
introducem o noua valoare n coada, o vom insera in ordine crescatoare. Vom folosi o coada de
prioritati (heap). Algoritmul seamana cu cel al lui Dijkstra, de drum minim in graf.

Pentru a nu complica algoritmul Lee, putem face altceva: atunci cand dam de o valoare 1, sa ne
deplasam in jos. Ne putem imagina o matrice 3D, in care prima ,felie” orizontala, cea de sus,
corespunde tarii 1, urmatoarea tarii 2 si asa mai departe. Cand parcurgem BFS aceasta matrice,

203

in ,felia” K, vom genera vecinii in acelasi plan daca pozitia curenta nu are valoarea K In matricea
originala. Altfel vom ramane la aceeasi pozitie si vom trece la urmatoarea ,felie”, K + 1.

Algoritmul trebuie implementat cu grija pentru a nu depasi memoria. Complexitatea este O(N? -
M) ca timp si memorie.

Subtaskul 8

Ne propunem sa calculam, pe rand, drumurile minime catre tara 1, apoi catre toate tarile
2,3,..., M. Sa presupunem ca am calculat drumurile minime pana la tara K — 1 si dorim sa le
calculam pentru tara K. Pentru orice astfel de pozitie, drumul optim poate veni de la o pozitie
anterioara ce poate fi in directia unuia din colturile matricei. Putem, deci, evalua cele patru
drumuri optime posibile, apoi selectam minimul dintre ele. Vom arata cum rezolvam problema
pentru coltul (1, 1).

Parcurgem matricea pe linii. Pentru fiecare pozitie vom calcula drumul minim péna la acea
pozitie, indiferent daca acea pozitie apartine tarii K ce se doreste a fi calculata. Atunci:

DIL][C] daca A[L][C] = K — 1,sau

P[L)[C] = {min{Pl[L —1][C]+ 1, A[L][C — 1] + 1} altfel

Similar vom calcula P, P3 si Pj, lungimile minime pentru cele patru directii. Parcurgerile se
modifica pentru a calcula minimele partiale corect.

La final calculam matricea D pentru pozitiile unde avem valori K:

D[L][C] = min{ A [L][C], P,[L][C], P5[L][C], P4[L][C]}
Complexitatea acestei solutii este tot O(N? x M) ca timp, dar O(N?) memorie. Constanta este
mai mica, drept care va lua 100p.

Exista si o solutie O(N?log N). Ideea este similard cu solutia anterioard, dar ne propunem si
facem trecerea de la tara K —1 la tara K in O(N log N). Considerand ca avem drumurile calculate
pentru tara K — 1, dorim sa calculam drumurile pentru tara K. Vom proceda similar, impartind
problema in patru subprobleme, drumurile optime ce vin din cele patru directii.

Din nou, sa consideram directia coltului (1, 1).

Sa consideram urmatoarea structura vectoriala V[]: sa presupunem ca pe coloana C' avem pozitii
cu valori K — 1. Fie ele L;, cu drumurile minime precalculate D[L;][C]. Atunci, la pozitia V[C]
vom memora min(D[L;][C] — L; — C).

Acum, parcurgem matricea pe linii. Atunci cand la pozitia (L, C') intalnim valoarea K —11in A,
vom actualiza elementul V[C] cu minimul corespunzator. Atunci cand la pozitia (L, C') Intalnim
valoarea K in A, raspunsul pentru P;[L][C] va fi:

P[L][C] = min{L + C + V[C}]} = L + C + min{V[C]}

unde C; < C'. De ce? Deoarece drumul optim este:

204

pentru L; < L si C; < C. Deoarece introducem punctele K — 1 in V' prin parcurgere pe linii, ne
asiguram ca ambele conditii sunt indeplinite.

Dac# vom ciuta minimul liniar, obtinem un algoritm O(N?). Insa putem folosi o structura de
calcul rapid al minimului pe intervale, cum ar fi un arbore de intervale sau un arbore indexat
binar. Complexitatea scade la O(N?log N).

13.9 Cod-sursa pentru problema Passepartout

using namespace std;

ifstream fin("passepartout.in");
ofstream fout("passepartout.out");
const int INF=1e9;

struct point

{
int x,y,val,d;
s
vector<point> v[155];
int n,m;
bool comp(point a,point b)
{
if(a.x!=b.x)
return a.x<b.x;
return a.val<b.val;
}

int aib[2][1005];
void reset()

{
for(int i=1;i<=n;i++)
aib[0][i]=aib[1][i]=INF;
}
int 1lsb(int x)
{
return x&(-x);
}
void update(int ind,int poz,int val)
{
for(int i=poz;i<=n;i+=1sb(i))
aib[ind][il=min(aib[ind][i],val);
}
int query(int ind,int poz)
{
int rez=INF;
for(int i=poz;i>=1;i-=1sb(i))
rez=min(rez,aib[ind][i]);
return rez;
}
int main()
{ ios_base::sync_with_stdio(); fin.tie(0);

fin>>n>>m;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)

{
int x;
fin>>x;
if(x!=0)
v[x].push_back({i,j,x,INF});
}

205

for(point &p:v[1])
p.d=p.x-1+p.y-1;
for(int z=2;z<=m;z++)

{
vector<point> pts;
for(point p:v[z-1])
pts.push_back(p);
for(point p:v[z])
pts.push_back(p);
sort(pts.begin(),pts.end(),comp);
reset();
for(int i=0;i<pts.size();i++)
{
if(pts[i].val==z-1)
{
int val=pts[i].d-pts[i].x-pts[il.y;
update(@,pts[i].y,val);
val=pts[i].d-pts[i].x+pts[i].y;
update(1,n-pts[i].y+1,val);
}
else
{
int val=query(0,pts[i].y)+pts[i].x+pts[i].y;
pts[i].d=min(pts[i].d,val);
val=query(1,n-pts[i].y+1)+pts[i].x-pts[i].y;
pts[i].d=min(pts[i].d,val);
}
}
reset();
reverse(pts.begin(),pts.end());
for(int i=0;i<pts.size();i++)
{
if(pts[il.val==z-1)
{
int val=pts[i].d+pts[i].x-pts[i].y;
update(0,pts[i].y,val);
val=pts[i].d+pts[i].x+pts[i].y;
update(1,n-pts[i].y+1,val);
}
else
{
int val=query(0,pts[i].y)-pts[i].x+pts[i].y;
pts[i].d=min(pts[i].d,val);
val=query(1,n-pts[i].y+1)-pts[i].x-pts[i].y;
pts[i].d=min(pts[i].d,val);
}
3
v[z].clear();
for(point p:pts)
if(p.val==z)
v[z].push_back(p);
}
int ans=INF;

for(point p:v[m])
ans=min(ans,p.d);

fout<<ans+1<< :

return 0;

206

	I Olimpiada Județeană de Informatică 2025
	OJI 2025, clasa a V-a
	Problema Palindrom
	Rezolvarea problemei Palindrom
	Cod-sursă pentru problema Palindrom
	Problema Semafoare
	Rezolvarea problemei Semafoare
	Cod-sursă pentru problema Semafoare

	OJI 2025, clasa a VI-a
	Problema Avion
	Rezolvarea problemei Avion
	Cod-sursă pentru problema Avion
	Problema Mandatar
	Rezolvarea problemei Mandatar
	Cod-sursă pentru problema Mandatar

	OJI 2025, clasa a VII-a
	Problema Prietenie
	Rezolvarea problemei Prietenie
	Cod-sursă pentru problema Prietenie
	Problema Teren
	Rezolvarea problemei Teren
	Cod-sursă pentru problema Teren

	OJI 2025, clasa a VIII-a
	Problema Joc
	Rezolvarea problemei Joc
	Cod-sursă pentru problema Joc
	Problema Reducere
	Rezolvarea problemei Reducere
	Cod-sursă pentru problema Reducere

	II Olimpiada Națională de Informatică 2025
	ONI 2025, clasa a V-a
	Problema Cartonașe
	Rezolvarea problemei Cartonașe
	Cod-sursă pentru problema Cartonașe
	Problema Căsuțe
	Rezolvarea problemei Căsuțe
	Cod-sursă pentru problema Căsuțe
	Problema Perechi
	Rezolvarea problemei Perechi
	Cod-sursă pentru problema Perechi

	ONI 2025, clasa a VI-a
	Problema Diff
	Rezolvarea problemei Diff
	Cod-sursă pentru problema Diff
	Problema Prime
	Rezolvarea problemei Prime
	Cod-sursă pentru problema Prime
	Problema Special
	Rezolvarea problemei Special
	Cod-sursă pentru problema Special

	ONI 2025, clasa a VII-a
	Problema Alvn
	Rezolvarea problemei Alvn
	Cod-sursă pentru problema Alvn
	Problema Conturi
	Rezolvarea problemei Conturi
	Cod-sursă pentru problema Conturi
	Problema Succesori
	Rezolvarea problemei Succesori
	Cod-sursă pentru problema Succesori

	ONI 2025, clasa a VIII-a
	Problema Mușuroi
	Rezolvarea problemei Mușuroi
	Cod-sursă pentru problema Mușuroi
	Problema Notwen
	Rezolvarea problemei Notwen
	Cod-sursă pentru problema Notwen
	Problema Program
	Rezolvarea problemei Program
	Cod-sursă pentru problema Program

	Baraj selecție lot juniori ONI 2025
	Problema Joc
	Rezolvarea problemei Joc
	Cod-sursă pentru problema Joc
	Problema Succes
	Rezolvarea problemei Succes
	Cod-sursă pentru problema Succes
	Problema Vnoroc
	Rezolvarea problemei Vnoroc
	Cod-sursă pentru problema Vnoroc

	III Tabăra de pregătire a lotului național de informatică juniori, Craiova, 9-14 mai 2025
	Barajul 1
	Problema Rețete
	Rezolvarea problemei Rețete
	Cod-sursă pentru problema Rețete
	Problema Tort
	Rezolvarea problemei Tort
	Cod-sursă pentru problema Tort
	Problema Zid
	Rezolvarea problemei Zid
	Cod-sursă pentru problema Zid

	Barajul 2
	Problema Lemmings
	Rezolvarea problemei Lemmings
	Cod-sursă pentru problema Lemmings
	Problema Mutare
	Rezolvarea problemei Mutare
	Cod-sursă pentru problema Mutare
	Problema Wall-E
	Rezolvarea problemei Wall-E
	Cod-sursă pentru problema Wall-E

	IV Tabăra de pregătire a lotului național de informatică juniori, Zalău, 22-27 mai 2025
	Barajul 3
	Problema Allp
	Rezolvarea problemei Allp
	Cod-sursă pentru problema Allp
	Problema Powtop
	Rezolvarea problemei Powtop
	Cod-sursă pentru problema Powtop
	Problema Sumgcd
	Rezolvarea problemei Sumgcd
	Cod-sursă pentru problema Sumgcd

	Barajul 4
	Problema Căsuța
	Rezolvarea problemei Căsuța
	Cod-sursă pentru problema Căsuța
	Problema Nrk
	Rezolvarea problemei Nrk
	Cod-sursă pentru problema Nrk
	Problema Passepartout
	Rezolvarea problemei Passepartout
	Cod-sursă pentru problema Passepartout

