Analiza impactului programei de informatica
bazata exclusiv pe limbajul Python

asupra intelegerii conceptelor de baza de programare

Context

Romania detine un avantaj competitiv solid, construit istoric si confirmat international,
fiind recunoscuta ca un important furnizor de ingineri software cu pregatire riguroasa in
algoritmica, sisteme si optimizare. Mentinerea si consolidarea acestui avantaj presupun
dezvoltarea continuda a unei mase critice de specialisti cu profil autentic de engineer.
Invitamantul preuniversitar de informatici a avut un rol determinant in aceasti directie,
programele actuale contribuind semnificativ la formarea gandirii computationale a
absolventilor de la specializarea matematica-informatica.

In contextul in care Romania dezvolti tehnologie in multiple sectoare, iar industria IT&C
genereaza peste 8% din PIB si prezinta perspective clare de crestere, investitia in formarea
specialistilor din domeniu reprezinta o optiune strategica. Aceasta este esentiala pentru
asigurarea securitatii economice a tarii pe termen lung.

Elemente de noutate in programa clasei a IX-a disciplina Informatica

Analizand comparativ programele actuale cu programele lansate in dezbatere publica pentru
clasa a IX-a, specializarile matematica-informatica, matematica-informatica intensiv si
stiintele naturii, elementul definitoriu de noutate propus constd in utilizarea
limbajului Python ca wunic instrument pentru introducerea conceptelor de
programare, inclusiv liste, subprograme, fisiere, interfete grafice si programare orientata pe
obiecte (POO).

Desi Python este un limbaj popular si versatil, pe care il consideram extrem de util si potrivit
pentru a construi exemple complexe de programe cu scop specific (de exemplu jocuri cu
graficd sau inteligenta artificiala), consideram cd acesta trebuie sa apara intr-o etapa
ulterioara a procesului de invatare, in care conceptele de baza de programare (de
exemplu, variabile, tipuri de date, tablouri — vectori si matrici, fisiere, etc) sunt deja
sedimentate, iar gandirea critica predomina in rezolvarea problemei date.

In Anexa 1 prezentim o analizi detaliati a programei puse in dezbatere, care si
demonstreze faptul ca alegerea acestui limbaj pentru a preda conceptele in forma si ordinea
din aceastd programa ridicd probleme didactice semnificative, impiedicand intelegerea
naturalad a conceptelor de baza ale programarii, dar si limitarea sau lipsa abordarii unora
dintre concepte, ceea ce duce la superficialitate.

In continuare rezamam din perspectivi psihopedagogica principalele argumente.

1. Lipsa alinierii la stadiul de dezvoltare cognitiva al elevilor de 14—15 ani

Conform modelelor consacrate ale dezvoltarii cognitive (ex. Inhelder & Piaget, 1958; Case,
1992; Sweller, 1994), elevii din clasele de inceput ale liceului se afla in faza de consolidare a
gandirii logico-formale, nu in faza de manipulare naturala a conceptelor abstracte de nivel
inalt. Programa introduce elemente care necesita:

o manipularea simultana a mai multor niveluri de abstractie (tipuri dinamice, obiecte,
instante, referinte, structuri dinamice);

o operarea cu modele mentale asupra unor mecanisme invizibile (gestionarea
automata a memoriei, tipuri implicite, conversii).

Aceste cerinte depasesc capacitatea cognitiva tipica pentru acest nivel de varsta, generand
suprasolicitare (cognitive overload), invatare superficiala si confuzie conceptuala.

Didactica programarii, fundamentata in ultimele doua decenii (Robins, Rountree &
Rountree, 2003; Lister, 2011; Luxton-Reilly, 2016), recomanda introducerea programarii
prin: constructie graduald a conceptelor, transparenta a mecanismelor, reducerea
complexitatii initiale, intelegerea executiei programului inainte de abstractizare.

2. Caracteristicile limbajului Python mascheaza concepte fundamentale

Python este accesibil, dar ascunde mecanisme esentiale pentru formarea gandirii
algoritmice. De exemplu:

o citirea datelor produce intotdeauna text, impunand intelegerea conversiilor de tip
inainte ca elevul sa inteleaga notiunea de tip de date;

e gestionarea automatd a numerelor mari elimina perceptia asupra limitelor
calculatoarelor;

o orice variabild este un obiect, chiar dacd elevul incd nu cunoaste notiunile de
referinta, instantiere sau spatiu de memorie.

Aceasta opacitate face dificila construirea unor modele mentale corecte, aspect esential in
primele etape ale invatarii programarii.

3. Introducerea prematura a Programarii Orientate pe Obiecte

POO este un cadru conceptual care presupune abstractizare, clasificare, modelare si
relationare intre entitati — procese cognitive de nivel inalt.

Literatura de specialitate subliniaza ca POO este dificila chiar si la nivel universitar pentru
studentii incepatori. Introducerea sa la clasa a IX-a, fara un fundament solid al programarii
structurate, contravine recomandarilor din literatura de specialitate si genereaza
suprasolicitare cognitiva. Elevii aflati inca in procesul de invatare a functiilor nu au resursele
necesare pentru a integra notiuni precum clase, metode si instante.

4. Suprasarcina curriculara in raport cu timpul disponibil

Doua ore pe saptamana sunt insuficiente pentru parcurgerea unui volum atat de complex,
respectiv consolidarea cunostintelor si exersarea prin activitati practice.

Prea multe concepte introduse prea rapid duc la fragmentare, pierderea coerentei si
imposibilitatea asigurarii unei invatari semnificative.

La nivel introductiv, o intelegere solidd a conceptelor fundamentale de programare
presupune expunerea elevilor la numeroase activitati aplicative si la exersarea sistematica a
strategiilor de rezolvare a problemelor in contexte variate. Programa aflata in dezbatere
include insa un volum considerabil de concepte teoretice — adesea implicite sau insuficient
explicitate — in timp ce ofera relativ putini algoritmi si exemple practice care sa faciliteze
transferul acestor concepte in activitati concrete de invatare.

Trebuie sd mentionam cd suprasarcina curriculara este semnificativ mai mare pentru
specializarea Stiintele naturii. Desi in planul cadru disciplina Informatica are alocata o
singura ora la aceasta specializare, in timp ce la specializarea Matematica-informatica
alocarea este de 2 ore, diferentele dintre programele celor doua specializari sunt minore
(necesitand cel mult 5 ore), singurele elemente de continut suplimentare la matematica-
informatica fiind:

¢ notiunile de coada si stiva (doar la nivel de concept, fara operatii specifice cu aceste
structuri de date);

e transformarea unui numar dintr-o baza de numeratie in alta baza de numeratie;

e sortarea elementelor unei liste prin metoda bulelor.

5. Abordare excesiv de orientata teoretic, in detrimentul aplicabilitatii practice

Structura actuala a programei este excesiv de orientatd spre componenta teoretica, in
detrimentul aplicabilitatii practice. Chiar si sugestiile metodologice — care precizeaza ca
"activitatile din cadrul instruirii teoretice se desfasoarad, de regula, in sali de clasa, dotate
cu tabla interactiva, pentru exemplificarea programelor pe calculator, iar activitdtile din
cadrul instruirii practice se desfdasoard, de reguld, in laboratorul de informatica" —
subliniazi indirect aceasti disproportie. In predarea informaticii, fiecare concept teoretic
trebuie consolidat prin aplicare imediata in contexte diverse, astfel incat invatarea sa devina
functionala si relevanta.

Demersul didactic trebuie sa fie centrat pe elev, vizind formarea capacitétii acestuia de a
transfera si aplica conceptele teoretice in situatii practice. Daca accentul lectiei ramane
predominant pe demonstratiile profesorului, rezultatul va fi, in cel mai bun caz, dezvoltarea
competentei elevilor de a intelege solutiile prezentate, nu si de a le reproduce sau adapta
autonom in contexte noi. Din acest motiv, desfasurarea orelor de informatica in
laborator este esentiala pentru formarea competentelor specifice domeniului.

Concluzie

Din perspectivd pedagogica si cognitivd, ordinea si nivelul de complexitate propuse de
programa actuald nu sunt optim adaptate profilului elevilor de clasa a IX-a. Un demers
didactic care introduce rapid concepte avansate, fird fundamentare, risca sa formeze
modele mentale incorecte despre functionarea programelor.

Constructia competentelor de programare are nevoie de o abordare secventiala,
transparenta si adecvata varstei, in care conceptele fundamentale sunt consolidate inaintea
celor avansate. Reechilibrarea programei in aceasta directie ar creste semnificativ eficienta
procesului de invatare si ar asigura premisele pentru o formare autenticd in domeniul
informaticii.

Solutia propusa — Progresia C++ — C*+* st Python — Python si SQL

Anexa 2 contine o propunere schematica de programa pentru disciplina informatica pentru
specializarea matematica-informatica, cu diferentiere pentru matematica informatica
intensiv pentru clasele IX-XII. Documentul include competentele generale vizate si
continuturile propuse, cu o detaliere orientativa a alocarii orare, pentru a valida fezabilitatea
atingerii competentelor specifice in bugetul de timp alocat.

Principiile programei propuse

e Propunerea de programa pe care o prezentam este structurata pe principiul progresiei
graduale si al relevantei in raport cu finalitatile educationale si cu cerintele pietei
muncii.

e Programa urmareste formarea unei gandiri computationale si o intelegere profunda a
conceptelor fundamentale ale programarii pentru toti elevii.

e Programa are o constructie organica, pornind de la fundamente si evoluand natural
spre aplicabilitate practica.

Structura generala a programei propuse, din perspectiva limbajelor
de programare

Clasele a IX-a si a X-a: limbajul C++

Limbajul C++ este utilizat pentru formarea riguroasa a gandirii algoritmice si pentru
intelegerea aprofundata a mecanismelor fundamentale ale programarii: variabile, tipuri de
date, structuri de control, functii, pointeri, recursivitate, structuri de date.

Clasa a XI-a: C*+* si Python

In aceasti etapi, se continui aprofundarea algoritmicii si a structurilor de date complexe
prin C++. In egald misur3, se introduce limbajul Python, deoarece, la ora actuali, Python
este un limbaj dominant in domenii moderne: Inteligenta Artificiald, Data Science, Cloud,
automatizare. Abordarea limbajului Python va fi accesibila pentru elevii de clasa a XI-a,
care au deja formate competente in domeniul algoritmicii si programarii prin intermediul
limbajului C++.

Clasa a XII-a: Python si SQL

In ultimul an de liceu, accentul se mut# de la algoritmica fundamentali spre aplicabilitate
si interdisciplinaritate. Python este utilizat pentru introducerea in domeniul Inteligentei
Artificiale, prin biblioteci specializate (NumPy, pandas, Matplotlib, scikit-learn), care
permit experimentarea directd cu concepte precum regresie, clasificare, retele neuronale.
In paralel, limbajul SQL este introdus pentru studiul bazelor de date, reprezentand
standardul industriei si un instrument indispensabil in orice carierda din domeniul IT.

Progresia C++ — C+*+ si Python — Python si SQL asigura echilibrul dintre rigoarea
algoritmica si aplicabilitatea practica, oferindu-le elevilor atat competente fundamentale
(structuri de date, optimizare, gandire algoritmica), cat si abilitati moderne, aliniate cu
cerintele actuale ale pietei muncii si ale invatamantului superior de profil.

C++ versus Python — avantaje versus riscuri

Concept C++ Python Impact educational
Citirea Explicita, Totul ca sir de |In C**, elevul invata structuri si tipuri inainte de
datelor tipuri fixe caractere concepte avansate.

. . |IFlexibil. codul |/In C**, atentie la detalii si disciplina algoritmica.
Strict, erori ’

. . . oate i i 4 i i
Rigoare obligatoriu ?unctiona chiar In I,”ython, ele\cll dezvolta rpen.tahtatea smerge si
rezolvate {101 asa”, ceea ce slabeste atentia si ordonarea
cu erori gandirii.

C+* dezvolta intelegerea logicii interne. In
Python concepte fundamentale ale programarii

Structuri de |Tablouri fixe, Liste de liste, orientate pe obiect sau structurilor de date
dictionare, X .
date clare ’ avansate sunt introduse prea devreme, la un nivel
clase X NS TN gy
superficial, ceea ce impiedica intelegerea solida a
fundamentelor disciplinei.
Clari Amestec de C+* invata gestionarea memoriei si referintelor.
Mutabilitate ey mutabile si Python poate crea confuzie in manipularea
explicita . o . .
imutabile datelor si referintelor.

Perspective pe termen lung

Limbajele de programare sunt volatile. Python este un limbaj aparut recent comparativ cu
C-ul, in timp ce limbajele C si C++ sunt folosite in industrie si in educatie de peste 50 de ani.
Ele au rezistat de-a lungul timpului si ne ofera certitudinea ca vor ramane relevante si peste
15—20 de ani. Informatica la liceu nu trebuie sa urmareasca moda sau limbajele «la moda».
Scopul nostru este sa formam concepte solide si gandire algoritmica. Daca construim pe un
teren schimbator, cum este Python-ul, riscam s& formam elevi care inteleg limbajul de azi,
dar nu au fundamentele necesare pentru viitor.

Un alt avantaj al C si C+* este cd formeaza rapid capacitatea de adaptare. Majoritatea
limbajelor moderne — Java, C#, Go sau Rust — sunt inspirate direct din C/C++. Elevul care
invata C++ intelege usor aceste limbaje si poate sa se adapteze rapid la cerintele industriei.

Formarea solida incepe cu un fundament stabil. Alegerea limbajului C/C++ nu este despre
nostalgie, ci despre responsabilitate: este despre a pregati programatori care pot intelege,
construi si inova, indiferent de ce limbaj va fi la moda maine.

Intr-un timp relativ scurt limbajele vor fi inlocuite de interfetele conversationale. Aplicatiile
vor fi realizate fara a scrie cod intr-un limbaj, ci adresdndu-ne Al-ului in limbaj natural.
Intrebarea ce urmeazi firesc este “Cum sa conversezi cu Al pentru crearea unor aplicatii
daca nu ai o intelegere profunda a mecanismelor fundamentale ale programarii?”

Rezumand, C++ ofera rigurozitate, claritate si disciplina, iar Python trebuie folosit
complementar, nu ca inlocuitor. Sustinem utilizarea adecvata, utila si eficienta a
limbajului Python pentru dezvoltarea de aplicatii in domeniile pentru care acesta a fost
conceput. In acelasi timp, considerdm cd limbajul C++ trebuie valorificat in mod prioritar
pentru consolidarea fundamentelor programarii.

Matematica-informatica intensiv vs neintensiv

Programele scolare aflate in prezent in dezbatere publica prevad introducerea limbajului C++
in clasa a IX-a la specializarea Informatica intensiv, in paralel cu studiul limbajului Python.
Aceasta abordare genereaza o suprasarcina cognitiva pentru elevii de la profilul intensiv,
chiar daca acestia beneficiaza de un numar dublu de ore fata de colegii lor de la neintensiv.
Este important de subliniat cd ponderea elevilor inscrisi in clase cu regim intensiv este
relativ redusa la nivel national.

In prezent, facultitile de profil din Romania (informatici, automatici si calculatoare,
cibernetica) formeaza aproximativ 10.000 de studenti anual. Totusi, pentru perioada 2026—
2035, proiectiile aratd ca economia digitald va necesita un numar semnificativ mai mare de
specialisti IT cu formare de nivel engineer. In acest context, devine esential ca invatdmantul
preuniversitar sa consolideze dezvoltarea gandirii computationale in randul elevilor de la
specializarea matematica-informatica neintensiv. Formarea competentelor specifice
disciplinei Informatica este nu doar o premisa pentru accesul elevilor la cariere in domeniul
IT, ci si o resursa intelectuala valoroasa pentru orice domeniu tehnic, precum si pentru alte
domenii, de exemplu stiintele medicale.

Concluzie — misiunea educationala

Romania trebuie sa formeze tineri capabili sa defineasca viitorul tehnologic, nu doar
utilizatori de software. Folosind exclusiv Python, riscim sa formam elevi care ,,se descurca
azi”, dar nu au baza necesara pentru viitor, formam simpli utilizatori de cod din biblioteci.

In cele din urma, adevdrata provocare este aceasta: ce vrem ca scoala sa construiasca
pentru Romania — simpli utilizatori de software sau tineri capabili sa defineasca viitorul
acestei tari prin inovatie sau, si mai mult, creatori de tehnologie?

Anexa 1.
Analiza detaliata a impactului programei de informatica

bazata exclusiv pe limbajul Python

asupra intelegerii conceptelor de baza de programare

Programa de informaticad pentru clasa a IX-a (specializarea matematicd-informatica -
neintensiv si intensiv) propune utilizarea limbajului Python pentru introducerea
conceptelor de programare, inclusiv liste, subprograme, fisiere, interfete grafice si
programare orientata pe obiecte (POO). Desi Python este un limbaj popular si versatil, pe
care il consideram extrem de util si potrivit pentru a construi exemple complexe de
programe cu scop specific (de exemplu jocuri cu grafica sau inteligenta artificiala),
consideram ca acesta trebuie sa apara intr-o etapa ulterioara a procesului de invatare, in
care conceptele de baza de programare (de exemplu, variabile, tipuri de date, tablouri
- vectori si matrici, fisiere, etc) sunt deja sedimentate, iar gandirea critica predomina
in rezolvarea problemei date.

Propunem o analizd detaliata a programei publicate, care s demonstreze faptul cd alegerea
acestui limbaj pentru a preda conceptele in forma si ordinea din aceasta programa ridica
probleme didactice semnificative, impiedicand intelegerea naturala a conceptelor de baza
ale programarii, dar si limitarea sau lipsa abordarii unora dintre concepte, ceea ce duce la
superficialitate.

1. Absenta unei introduceri solide in limbajul de programare suport

Programa propusa nu evidentiaza sau nu introduce sistematic elementele fundamentale ale
limbajului, ceea ce poate genera confuzie pentru elevii aflati la inceput de drum. In mod
particular, sunt neglijate urmatoarele aspecte:

a) Concepte / notiuni fundamentale:

e Conceptul de variabila si modul de lucru al memoriei - elevii trebuie sa
inteleaga ca variabilele nu sunt simple etichete, ci spatii in memorie care stocheaza
valori.

e Conceptele despre tipurile de baza si caracteristicile lor - diferentierea intre
int, float, string etc., precum si comportamentul specific al fiecarui tip in operatii.

e Diferenta dintre valoare si referinta in Python - intelegerea modului in care
obiectele mutable si imutabile sunt manipulate in memorie.

e Domeniul de valabilitate al variabilelor (local vs global) - impactul asupra
vizibilitatii si duratei de viata a valorilor stocate.

e Erori de sintaxa si comportamentul codului la rulare - elevii trebuie sa
inteleagd ca orice greseald sintacticad impiedica rularea programului si genereaza
mesaje de eroare explicite, care indica tipul de problema si locatia acesteia. Aceasta
ofera oportunitatea de a invata debugging-ul de baza si importanta respectarii regulilor
limbajului.

e Mecanismul de executie in Python - cum interpretorul citeste si executd codul
linie cu linie, si ce inseamna ca programul sa fie interpretat in timp real, evidentiind
diferentele - avantaje si dezavantaje - fata de limbajele compilate.

Aceasta abordare le permite elevilor sa inteleagd nu doar cum se scrie codul, ci si ce se

tntampla cand codul nu respecta regulile limbajului, oferind context pentru erori si
debugging inainte de a trece la concepte mai abstracte, precum liste, clase si obiecte.

b) Instructiuni de control:

Structurile fundamentale de control (while, for, if-else) trebuie sa fie centrul dezvoltarii
gandirii algoritmice, nu elemente secundare sau introduse derivativ. Acestea reprezinta
baza gandirii algoritmice, deoarece permit elevilor sa defineasca fluxul logic al programului.
Fara o intelegere solida a acestor structuri, elevii risca sa scrie cod care ,functioneaza” doar
in cazuri specifice, fara sa inteleagd principiul general.

In plus, elevii trebuie sa fie familiarizati cu modul corect de utilizare a instructiunilor de
control si cu subtilitatile acestora:

e Bucle for si while: cum se scrie sintactic corect o bucld, ce reprezintd expresia de
conditie si cum se modifica variabila de control; de ce bucla poate include un else si ce
inseamna acesta in contextul Python (executat daca bucla se termind normal, fara

break).

e Instructiunile break si continue: cum break opreste imediat bucla curenta, iar
continue sare peste iteratia curentd si trece la urmatoarea, si cum utilizarea lor
influenteaza fluxul de executie.

e Instructiunea if-else: cum se definesc conditiile logice, cum se interpreteaza ramura
else si cum poate fi utilizata pentru a acoperi toate cazurile posibile; diferenta dintre if-
elif-else si mai multe instructiuni if independente.

e Structuri combinate: cum se pot include bucle in interiorul conditiilor si conditii in
interiorul buclelor, pentru a construi algoritmi mai complecsi.

Astfel, elevii nu doar ca invata sintaxa, dar si inteleg logica fiecarei structuri de control si
modul in care instructiunile speciale (break si continue) modifica fluxul algoritmului,
dezvoltand gandirea algoritmica necesara pentru programe corecte si eficiente.

Astfel, invatarea acestor structuri trebuie sa includd nu doar sintaxa, ci si
comportamentul programului la rulare, precum si modalitatile de
diagnosticare a erorilor.

c) Sintaxa vs semantica limbajului:

Pe langa instructiunile de control, elevii trebuie sa inteleaga diferenta dintre sintaxa
limbajului si semnificatia conceptuala a codului. Aceasta include:

e Utilizarea si instalarea pachetelor externe, pentru a vedea cum codul poate fi
extins si modularizat;

e Organizarea codului in mai multe fisiere, pentru a intelege principiile de
modularizare si reutilizare;

e Principiile de naming, indentare si stil (coding style), care, desi nu sunt tratate
implicit in programa, sunt esentiale pentru dezvoltarea unui stil de programare corect
si coerent care asigura lizibilitatea codului.

Fara o prezentare clara a acestor fundamente, elevii risca sa invete doar sintaxa izolata,
fara sa inteleaga conceptele care stau la baza functionarii limbajului si fara sa poata aplica
cunostintele in contexte noi.

Lipsa unei introduceri metodice si progresive asupra instructiunilor de control si a
semanticii limbajului are efecte directe asupra procesului de invatare:
e Elevii memoreaza comenzi si sintaxd fara a intelege principiile sau logica de
functionare;

e Capacitatea de a transfera cunostintele catre alte limbaje este redusa, deoarece nu au
dezvoltat schema conceptuali si gandirea critica;

e Apar dificultati in debugging si in rezolvarea problemelor, deoarece elevii nu au
exemple si explicatii clare pentru elementele fundamentale de sintaxa si structura.

Consolidarea acestor notiuni fundamentale inainte de a introduce concepte mai abstracte,
precum clasele si obiectele, este esentiald pentru succesul pedagogic in predarea
programarii.

2, Citirea datelor in Python

Un aspect problematic in predarea Python este modul in care limbajul trateaza tipurile de
date. Toate datele citite de la tastatura prin functia input() sunt initial siruri de caractere (str
- strings), chiar daca elevul introduce valori numerice. Aceasta genereaza o serie de
dificultati pedagogice concrete:

e input() returneaza intotdeauna un string, nu un numar.

e Pentru a efectua operatii numerice, este necesara conversia explicita: int(input()) sau
float(input()).

e Conceptul de conversie de tip nu este intuitiv si ramane neclar daca elevul nu a discutat
anterior despre tipurile de date si despre reprezentarea interna a acestora.

Astfel, problema nu este doar de sintaxa, ci de semnificatie fundamentala: elevul trebuie sa
inteleaga ce reprezinta fiecare tip si de ce anumite operatii nu sunt permise fara conversie,
mai ales in contextul unui limbaj precum Python, care nu impune declararea explicita a
tipului de date pentru variabile. Aceasta flexibilitate sintactica poate masca diferentele reale
dintre tipuri si poate genera confuzie.

Necesitatea unei fundamentari prealabile

Inainte de a introduce citirea si procesarea datelor in Python, este esential ca elevii sd aiba o
intelegere conceptuala clara:

e Tipurile de date: ce este un sir de caractere? ce este un intreg? Cum se diferentiaza
si care sunt comportamentele caracteristice ale fiecaruia?

e Reprezentarea interna: De ce sunt diferite aceste tipuri si ce inseamna conversia
de tip (type casting)?

e Domeniul de aplicabilitate: Cand folosim strings si cand folosim numere?

e Operatii specifice: De ce putem concatena strings, dar nu putem adauga un numar
la un string fara conversie?

Compararea cu alte limbaje de programare
Dificultatea implicita a tipurilor in Python contrasteaza cu alte limbaje traditionale:

e C/C++: Tipurile sunt explicite la declarare (int x = 5; char s[] = "hello";), ceea ce
evidentiaza imediat diferentele intre date.

e Pascal: Tipurile sunt declarate vizibil (var x: integer; s: string;), facilitand intelegerea
conceptuala pentru programatorul incepator.

e Python: x = 5 si s = "hello" par identice din punct de vedere sintactic, mascand
diferentele fundamentale dintre tipuri.

e In contextul prelucririi cifrelor unui numir, programa actuald poate crea confuzii
semnificative. Citirea numerelor ca stringuri prin input() face ca orice numar introdus
sa fie initial un sir de caractere. Aceasta poate duce la confuzie atunci cand elevii
incearca sa faca operatii aritmetice sau sa acceseze cifre individuale.

a =input("a=")
b = input("b =")
print(a + b)

Prin urmare, un concept fundamental si simplu, precum citirea datelor devine
strans interconectat de altele mai complexe si aduce un efort cognitiv nenecesar in
primele programe pe care consideram ca trebuie sa le faca un elev.

3. Introducerea Programarii Orientate pe Obiecte in clasa a IX-a

Programarea Orientata pe Obiecte (POO) este prezentata in literatura de specialitate drept
o paradigma de programare avansata care necesita baze solide de programare imperativa
pentru a putea fi inteleasa. Studiile lui Bennedsen si Caspersen [1, 2] arata ca nivelul de
abstractizare al studentilor nu este un predictor clar al succesului in invatarea POO la nivel
introductiv, ceea ce sugereaza ca inclusiv persoanele cu abilitati cognitive dezvoltate pot
intampina dificultati semnificative in intelegerea conceptelor cheie din POO, daca nu
stdpanesc conceptele de baza ale programarii. Acest rezultat poate fi interpretat ca o dovada
ca introducerea POO la clasa a IX-a, cand elevii abia incep sa invete bazele programarii si
sa-si dezvolte gandirea algoritmica, risca sa fie prematura. Capacitatea de abstractizare a
elevilor nu garanteaza intelegerea corecta a conceptelor, iar dificultatea de a aplica notiuni
precum clase, obiecte, metode o sa apara in randul unui numar foarte mare de elevi. Mai
mult, studiile lui Bennedsen si Caspersen [1, 2] sugereaza ca succesul in programare depinde
de alti factori, precum abilitatea practica de a scrie cod si intelegerea logicii programarii.
Astfel, pentru elevii de liceu, o abordare progresiva, care sa consolideze mai intai conceptele
programarii imperative si gandirea algoritmica, urmata apoi de explicarea conceptelor de
Programare Orientata pe obiecte abia in clasa a XI-a, ar putea fi mult mai eficienta si mai
realista decat introducerea directa a unor concepte POO pe care nu le vor intelege.

Clasele si obiectele necesita o intelegere prealabila a tipurilor de date, a structurii memoriei
si a modului de lucru al limbajului de programare. Elevii de 14-15 ani se afla, conform lui
Piaget, la stadiul operational concret, iar gandirea abstracta nu este suficient dezvoltata
pentru a asimila rapid conceptele de clasd, membri ai clasei (date si metode) sau obiecte. De
asemenea, abia in clasa a IX-a sunt predate subprogramele (functiile), iar elevii nu vor avea
timp sa experimenteze suficient cu acestea, astfel cid nu ne putem astepta sa faca distinctia
intre o functie si 0 metoda sau sa inteleaga pe deplin rolul incapsularii datelor si motivul
pentru care este util sa lucram cu clase. Fara aceasta experienta practica anterioara,
introducerea POO risca sa fie confuza si sa nu atinga obiectivele de invatare.

Modelul conceptual liniar - lista

Programa solicitd lucrul cu liste (sectiunile 1.1 si 3.5) si cu clasa list din Python (sectiunea
3.5), Insa evita explicarea explicita a naturii orientate pe obiecte a acestora. O abordare
pedagogica mai eficienta ar fi introducerea conceptului de tablou pe baza urmatoarelor
variante:

e Utilizarea pseudocodului care permite lucrul cu tablouri abstracte de valori, fara detalii
de implementare sau reprezentare

e Utilizarea unui limbaj procedural (C, C++) unde tablourile sunt structuri fundamentale,
cu semantica bine definita.

Pe langa liste, tuplurile ar putea fi prezentate in paralel, deoarece sunt utile in multe
contexte practice in Python. De exemplu, o functie poate returna mai multe valori simultan
folosind un tuplu, cum ar fi:

def min_max(lista):
return min(lista), max(lista)

rezultat = min_max([4, 7, 1, 9])

Tuplurile sunt imutabile si permit elevilor sa inteleaga diferenta dintre date mutabile si
imutabile, concept important 1in proiectarea programelor si in intelegerea
comportamentului functiilor.

De asemenea, programa omite conceptul de range, concept care este foarte util pentru
generarea de secvente si pentru construirea de bucle for simple, clare si eficiente:

for i in range(1, 10, 2):
print(i)

Un alt element lipsa este conceptul de exceptie, desi unele metode ale listelor predefinite
pot genera erori (de exemplu, list.index() poate arunca exceptia ValueError daca elementul
nu existda). Explicarea modului de prindere si tratare a exceptiilor (try - except) ar fi utila
pentru:

e Intelegerea erorilor si prevenirea opririi neasteptate a programului;
e Dezvoltarea gandirii defensive in programare;
e Introducerea treptatd a unui concept fundamental al limbajelor moderne: manipularea
controlata a situatiilor neprevazute.
4. Lipsa constientizarii limitarilor tehnologice ale unui calculator

Un alt efect major al utilizarii exclusive a limbajului Python in programa este pierderea unei
componente esentiale a alfabetizarii informatice: constientizarea limitarilor reale
ale resurselor pe un calculator si a modului in care acestea influenteaza logica si stilul
programarii.

Python ascunde aproape in totalitate detalii legate de: gestionarea memoriei, tipurile
primitive, limitele numerice, structurile de date statice, reprezentarea interna a datelor,
costul real al operatiilor.

In special, modul in care Python gestioneaza numerele intregi creeaza impresia
falsa ca acestea sunt “infinite”, intrucat:

e In locul unui tip int pe 32 sau 64 de biti, Python foloseste un tip de dimensiune
arbitrara (arbitrary-precision integer).

e Elevul nu se loveste niciodatd de overflow, depasiri de interval sau reprezentari
limitate,

e Elevul nu intelege ca in computerele reale orice numar are un cost de stocare si un
cost de procesare dependent de marimea lui.

Aceasta proprietate, desi convenabila in proiecte avansate, distorsioneaza in clasa a IX-
a intelegerea naturala a limitelor tehnice ale unui calculator, ducind la
convingerea ca:

e Orice numadr, oricat de mare, poate fi procesat instantaneu.
e Operatiile matematice nu se degradeaza odata cu marimea datelor.
e Resursele de memorie sunt nelimitate si gratuite.

Prin contrast, in limbaje precum C si C++, elevii descopera natural si firesc:

10

e caun int are o limita;

e ca depasirea limitei produce overflow;

e ca alegerea tipului potrivit este o decizie esentiala;

e ca multimea de valori reprezinta o constrangere tehnica reala;
e ca datele ocupa memorie fizica concreta.

Aceste situatii formeaza reflexe corecte despre cum functioneazd un calculator si
reprezinta baza oricarei intelegeri ulterioare despre performanta, optimizare, structuri de
date si arhitectura.

Folosirea exclusiva a Python in clasa a IX-a elimina orice contact cu limitarile
numerice si de memorie ale unui calculator real, ceea ce poate crea un model mental
eronat si greu de corectat in anii urmatori.

5. Complexitatea nealiniata a programei propuse

Programa de informatica pentru clasa a IX-a introduce simultan un numar foarte mare
de concepte avansate, intr-un ritm accelerat si intr-un limbaj care ascunde mecanisme
fundamentale de programare. Aceasta abordare genereaza o complexitate nealiniata cu
nivelul de dezvoltare cognitiva al elevilor de 14-15 ani si cu volumul limitat al orelor (2
ore/saptamana).

In mod concret, elevii sunt pusi in situatia de a gestiona in paralel:
e notiuni fundamentale despre variabile, tipuri de date si memorie;
e manipularea obiectelor complexe precum listele Python;
e conversii explicite intre tipuri pentru citirea datelor;
e structurarea unui program in functii si fisiere;
e comportamente interpretate linie cu linie;
e notiuni de programare orientata pe obiecte (clase, obiecte, metode);
e interfete grafice si alte concepte care presupun un grad ridicat de abstractizare.

Aceastd suprapunere de niveluri conceptuale profund diferite conduce la o suprasarcina
cognitiva documentata in literatura de specialitate (“extraneous cognitive load” [3]), ceea
ce afecteazi in mod direct capacitatea elevilor de a inviita in mod semnificativ. In loc s
evolueze progresiv de la notiuni simple la concepte mai avansate, elevii sunt expusi
simultan la elemente care, in mod firesc, ar trebui distribuite pe parcursul a doi sau chiar
trei ani de studiu

Mentionam ca anumite lucruri nu pot evitate a fi explicate, pentru a putea intelege sau folosi
un concept sau o constructie in Python. Dam urmatorul exemplu: un element suplimentar
care complica procesul de invatare este faptul ca in Python nu exista cu adevarat tipuri
de baza simple.

Chiar si operatii aparent banale, precum:

nu reprezinta stocarea unui simplu numar intreg, asa cum ar fi in limbaje precum C sau C++.
In realitate, aceasti instructiune:
e Creeaza un obiect al clasei int.

e Instantiazad o structura complexa cu functionalitate interna bogata.

11

e Aloca dinamic memorie pentru un obiect cu dimensiune arbitrara.
e Creeazd o referinta citre acest obiect in spatiul de nume curent.

Asadar, cea mai simpla operatie din programare — definirea unei variabile intregi —
implica in Python un mecanism orientat pe obiecte, pe care elevul nu il constientizeaza
st nu il poate intelege in primele saptamani de liceu. Mentionam ca a evita explicatia
comportamentului din spate pentru aceste constructii fundamentale, reprezintd o
greseala pedagogica fundamentala.

Referinte bibliografice:

[1] Bennedsen, J., & Caspersen, M. E. (2006). Abstraction ability as an indicator of success
for learning object-oriented programming?. ACM Sigcse Bulletin, 38(2), 39-43.

[2] BENNEDSEN, Jens; CASPERSEN, M. A Model-First Approach to Teaching Introductory
Object-Orientation. In: Workshop on Learning and Teaching Object-Orientation-
Scandinavian Perspectives. Oslo. 2003.

[3] Studiu la nivelul UE: “Extraneous cognitive load”, https://data.europa.eu/apps/data-
visualisation-guide/extraneous-cognitive-load

[4] WATSON, Christopher; FREDERICK, W.B. Li Failure Rates in Introductory
Programming Revisited,
https://drive.google.com/file/d/13HjokoQiFZozgowucyT2sazSPtZDDWEE /view?usp=share link

12

https://data.europa.eu/apps/data-visualisation-guide/extraneous-cognitive-load
https://data.europa.eu/apps/data-visualisation-guide/extraneous-cognitive-load
https://drive.google.com/file/d/13HjokoQiFZozg9wucyT2sazSPtZDDWEE/view?usp=share_link

Anexa 2.

Propunere schematica de programa

pentru disciplina informatica
Clasele IX-XII
Curriculum de specialitate (CS)

Filiera teoretica, profilul real, specializarea matematica-
informatica si matematica-informatica, intensiv informatica

construita pe paradigma
C++ — C** si Python — Python si SQL

COMPETENTE GENERALE (CG)

CGl1 Descrierea caracteristicilor esentiale ale principalelor concepte, structuri de date, metode si
strategii utilizate in informatica
CG2 Explicarea mecanismelor de functionare si a modului de utilizare a principalelor concepte, structuri
de date, metode si strategii informatice in contexte diverse
CG3 Aplicarea algoritmilor fundamentali, utilizind un limbaj de programare adecvat, in functie de
natura problemelor de rezolvat
CG4 Analizarea unor activitdti din lumea reala in vederea organizarii optime a datelor relevante, a
descompunerii problemei date in subprobleme, precum si distingerea pasilor necesari prelucrarii
datelor pentru rezolvarea acestora
CG5 Evaluarea corectitudinii si a eficientei unui program, in raport cu restrictiile specifice problemei
de rezolvat
CG6 | Dezvoltarea de solutii informatice originale pentru probleme din contexte stiintifice sau cotidiene,
cu testarea acestora pe date concrete
CONTINUTURI ALE iNVATARII
Clasa a IX-a
Domenii de . . 1\.Ir. ore
continut Continuturi (orientativ)
’ MI/Intensiv
1. 1.1 Elemente de baza ale dezvoltarii programelor
Fundamente — Analiza unei probleme n scopul identificarii datelor de intrare, 111
ale datelor de iesire si a modului de organizare eficientd a datelor
programarii — Principiile programarii structurate si modalitatea de reprezentare a 8/10
algoritmilor in pseudocod
— Etapele dezvoltarii aplicatiilor utilizand un mediu de programare 11
(editarea programului, compilarea programului si corectarea erorilor
de sintaxa, executia programului si depanarea programului — debug)
— Principii si metode in elaborarea testelor de evaluare pentru un 11
program
— Elemente de analizd a complexitatii algoritmilor
2. Structuri | 2.1. Tablouri unidimensionale (vectori)
de date — Caracteristici ale tablourilor unidimensionale 111
— Modalitati de declarare a tablourilor unidimensionale
— Modalitatea de calcul a dimensiunii spatiului de memorie alocat unui
tablou unidimensional
— Modalitatea de acces la elementele unui tablou unidimensional
— Repere pentru realizarea parcurgerii tablourilor unidimensionale

13

Domenii de
continut

Continuturi

Nr. ore
(orientativ)
MI/Intensiv

— Repere pentru modificarea unui tablou prin inserari/stergeri de
elemente

— Repere pentru verificarea unei proprietati valabile pentru toate
elementele unui tablou unidimensional, respectiv a existentei unui
element care are o anumitd proprietate

— Repere pentru utilizarea vectorilor caracteristici 1n rezolvarea
problemelor

— Repere pentru utilizarea vectorilor de frecventd in rezolvarea
problemelor

— Repere pentru prelucrarea secventelor de valori citite succesiv, cu sau
fara memorare in tablouri unidimensionale (minime/maxime, secvente
maximale cu o anumitad proprietate)

111

111

2/2

272

2/4

Suplimentar, pentru studiul intensiv al disciplinei informatica:
2.1. Tablouri unidimensionale (vectori) — completare
— Repere pentru utilizarea sumelor partiale in tablouri unidimensionale
in rezolvarea problemelor
— Repere pentru utilizarea tablourilor de diferente (difference-arrays)
in rezolvarea problemelor
— Repere pentru prelucrarea secventelor de lungime fixata
— Repere pentru implementarea operatiilor pe numere mari (adunare,
scadere, produsul dintre un numar mare §i un numar mic,
determinarea catului si restului Tmpartirii unui numar mare la un
numar mic, produsul a doud numere mari)
— Repere pentru aplicarea tehnicii Two-pointers in rezolvarea
problemelor

4

/4

/4
/8

/6

3. Algoritmi
fundamentali

3.1. Algoritmi de prelucrare a datelor numerice

— Algoritmi de prelucrare a cifrelor numerelor naturale scrise in baza 10
(extragerea tuturor cifrelor unui numdr natural, accesarea,
modificarea, inserarea, respectiv eliminarea unei cifre de pe o pozitie
specificatd, construirea unui numar prin addugarea unor cifre intr-o
ordine specificata)

— Algoritmi de prelucrare a divizorilor numerelor naturale (algoritmul
de identificare a divizorilor unui numér natural, algoritmul de
descompunere a unui numar natural in factori primi, algoritmul de
testare a primalitatii numerelor naturale, algoritmul de determinare a
celui mai mare divizor comun, respectiv a celui mai mic multiplu
comun)

— Algoritmi de calcul pentru a unor expresii matematice (sume,
factoriale, puteri)

— Algoritmi de generare a sirurilor definite prin relatie de recurenta

3.2. Algoritmi de prelucrare a tablourilor unidimensionale

— Algoritmul de cautare secventiala

— Algoritmul de cautare binara

— Algoritmul de sortare prin selectia minimului/maximului (Selection
sort)

— Algoritmul de interclasare a doua tablouri unidimensionale

— Algoritmul de determinare a numerelor prime mai mici decat o valoare
data utilizand Ciurul lui Eratostene

— Algoritmul de sortare utilizdnd vectori de frecventa

5/5

6/6

111

2/4

111

111

11
2/4

12

Suplimentar, pentru studiul intensiv al disciplinei informatica
3.1. Algoritmi de prelucrare a datelor numerice — completare
— Sisteme de numeratie pozitionale. Reguli de conversie Intre baza 10 si
alta baza de numeratie

2

14

Domenii de
continut

Continuturi

Nr. ore
(orientativ)
MI/Intensiv

— Aritmeticd modulara
— Algoritmul de exponentiere rapida
3.2. Algoritmi de prelucrare a tablourilor unidimensionale — completare
— Algoritmul de sortare prin metoda bulelor (Bubble sort)
— Algoritmul de sortare prin insertie (/nsertion sort)
— Algoritmul liniar de determinare a unei secvente de sumad maxima
(Kadane)

12
12

1
1
12

4. Elemente
de limbaj de
programare
—_CH

4.1. Fisiere text — caracteristici, operatii de baza
4.2. Functii
— Rolul si avantajele utilizarii functiilor
— Sintaxa declaratiei, definitiei si apelului unei functii
— Modalitati de transfer al parametrilor la apel (transfer prin valoare si
transfer prin referintd)
— Modalitatea de returnare a unei valori
— Analizd comparativd a variabilelor locale si variabilelor globale din
punctul de vedere al modului de declarare, clasei de memorare, duratei

111
10/16

Clasa a X-a

Domenii de
continut

Continuturi

Nr. ore
(orientativ)
MI/Intensiv

1. Structuri
de date

1.1. Structuri de date neomogene (tipul struct)
— Caracteristici ale structurilor de date neomogene
— Modalitati de declarare a unui tip de date pentru reprezentarea unei
structuri de date neomogene si a variabilelor de acest tip
— Modalitatea de acces la un camp al unei variabile de tip structura
1.2. Structura de date abstracta Stiva
— Caracteristici ale structurii de date abstracte Stiva
— Implementarea statica a unei stive utilizand tablouri unidimensionale
— Analiza problemelor in scopul identificarii necesitatii utilizarii unei
stive
1.3. Structura de date abstracta Coada
— Caracteristici ale structurii de date abstracte Coada
— Implementarea statica a unei cozi utilizand tablouri unidimensionale
— Analiza problemelor in scopul identificarii necesitatii utilizarii unei
cozi
1.4. Tablouri bidimensionale
— Caracteristici ale tablourilor bidimensionale
— Modalitati de declarare a tablourilor bidimensionale
— Modalitatea de acces la elementele unui tablou bidimensional
— Analiza problemelor in scopul identificarii necesitatii utilizarii
tablourilor
bidimensionale
— Repere pentru realizarea unor operatii specifice tablourilor
bidimensionale (parcurgere pe linii, parcurgere pe coloane, bordare)
— Modalitati de parcurgere a tuturor vecinilor unui element al unui
tablou bidimensional utilizand vectori de directie
— Caracteristici ale tablourilor bidimensionale patratice
— Repere pentru realizarea unor operatii specifice tablourilor
bidimensionale patratice (parcurgerea diagonalelor, parcurgerea
zonelor delimitate de diagonale, parcurgere pe chenare concentrice)
1.5. Siruri de caractere
— Caracteristici ale sirurilor de caractere

3/4

3/5

3/5

8/10

6/6

8/12

15

Domenii de
continut

Continuturi

Nr. ore
(orientativ)
MI/Intensiv

— Repere pentru prelucrarea sirurilor de caractere la nivel de caracter
— Repere pentru prelucrarea sirurilor de caractere utilizand functiile din
cstring

Suplimentar, pentru studiul intensiv al disciplinei informatica
1.4. Tablouri bidimensionale — completare

— Repere pentru utilizarea sumelor partiale in tablouri bidimensionale
1.6. Tablouri multidimensionale

— Caracteristici ale tablourilor multidimensionale

— Modalitati de declarare a tablourilor multidimensionale

— Modalitatea de acces la elementele unui tablou multidimensional

— Repere pentru realizarea parcurgerii tablourilor multidimensionale

4

4

2. Algoritmi
fundamentali

2.1. Algoritmi de umplere (fill)
— Caracteristici ale problemelor pentru care se poate aplica un algoritm
de umplere
— Forma genericd a unui algoritm de umplere

4/4

Suplimentar, pentru studiul intensiv al disciplinei informatica
2.2. Algoritmul lui Lee
— Caracteristici ale problemelor pentru care se poate aplica algoritmul
lui Lee
— Forma genericd a algoritmului lui Lee
2.3. Algoritmi simpli de criptare/decriptare a sirurilor de caractere
— caracteristici ale criptarii prin metoda cifrului Caesar si repere pentru
aplicarea metodei;
— caracteristici ale criptarii prin metoda substitutiei simple si repere
pentru
aplicarea metodei
— caracteristici ale criptdrii prin metoda transpozitiei si repere pentru
aplicarea metodei

/6

4

3. Strategii si
tehnici de
programare

3.1. Metoda Greedy
— Caracteristici ale problemelor pentru care se poate aplica metoda
Greedy
— Forma generica a unui algoritm de tip Greedy
— Repere pentru aplicarea metodei Greedy in rezolvarea problemelor

7/8

4. Elemente
de limbaj de
programare
—_C

4.1. Pointeri
— Caracteristici ale pointerilor
— Modalitatea de declarare a unei variabile de tip pointer
— Operatori care se pot utiliza asupra variabilelor de tip pointer
— Legdtura dintre pointeri si tablouri
4.2. Functii recursive
— Caracteristici ale subprogramelor recursive
— Mecanismul de realizare a recursivitatii
— Modalitati recursive de implementare a unor algoritmi elementari de
prelucrare a cifrelor numerelor, de prelucrare a divizorilor numerelor,
de exponentiere rapida, de parcurgere a tablourilor unidimensionale

2/4

7/8

Suplimentar, pentru studiul intensiv al disciplinei informatica
4.2. Functii recursive — completare
— Modalitati recursive de generare a unor elemente combinatoriale
(secvente binare, submultimi, produs cartezian, permutari,
aranjamente, combindri, parti{ii numar, partifii mul{imi)

/8

10

16

Domenii de
continut

Continuturi

Nr. ore
(orientativ)
MI/Intensiv

4.3.Biblioteca STL

Notiuni de baza necesare utilizarii unor clase predefinite: clase,
obiecte, constructori, iteratori, accesare membri

Functii din biblioteca STL care implementeaza algoritmi de sortare si
de cautare

Clasa vector

Clasa string

Clasa stack

Clasa gueue

Clasa a XI-a

Domenii de
continut

Continuturi

Nr. ore
(orientativ)
MI/Intensiv

1. Structuri
de date

1.1. Grafuri neorientate si grafuri orientate

Terminologie (graf neorientat, graf orientat, lant, lant elementar,
drum, drum elementar, ciclu, ciclu elementar, circuit, circuit
elementar, grad, graf partial, subgraf, graf transpus, conexitate, tare
conexitate, arbore, arbore partial, graf ponderat, arbore partial de cost
minim, graf orientat aciclic)

Tipuri speciale de grafuri (graf complet, graf hamiltonian, graf
eulerian, graf bipartit, graf turneu)

Reprezentarea grafurilor (matrice de adiacenta, liste de adiacenta,
lista muchiilor)

Reprezentarea grafurilor ponderate (matricea costurilor, liste de
adiacentd cu costuri, lista muchiilor cu costuri)

6/6

Suplimentar, pentru studiul intensiv al disciplinei informatica
1.2. Structuri de date liniare alocate dinamic

Caracteristici ale listelor simplu inlantuite. Operatii specifice
Caracteristici ale listelor simplu Inlantuite circulare
Caracteristici ale listelor dublu inlantuite

1.3. Structuri de date arborescente

Caracteristici ale arborilor cu radacina
Modalitati de reprezentare a arborilor cu radacina (reprezentare cu
referinte ascendente — vector de tati, reprezentare cu referinte
descendente)
Caracteristici ale arborilor binari cu radacina
Tipuri speciale de arbori binari cu radacina (arbore binar plin, arbore
binar complet, arbore binar strict)
Modalitati de reprezentare a arborilor binari cu radécina
Parcurgerea arborilor binari cu radacina: preordine, inordine,
postordine
Heap-uri
o Caracteristici ale heap-urilor
Inserarea unui nod intr-un keap
Combinarea a doua heap-uri
Crearea unui heap prin combindri repetate
Extragerea elementului minim/maxim din heap
Analiza complexitatii operatiilor
Arbori binari de cautare
o Caracteristici ale arborilor binari de cautare
o Inserarea unui nod intr-un arbore binar de cautare
o Stergerea unui nod dintr-un arbore binar de cautare

O O O 0 O

4

/3

/4

4

17

Domenii de
continut

Continuturi

Nr. ore
(orientativ)
MI/Intensiv

o Analiza complexitatii operatiilor in cazul cel mai
defavorabil
1.4 Tabele de dispersie (hash)

12

2. Strategii si
tehnici de
programare

2.1. Metoda de programare Divide et impera
— Caracteristici ale problemelor pentru care se poate aplica metoda
Divide et impera
— Forma genericd a unui algoritm de tip Divide et impera
— Repere pentru aplicarea metodei Divide et impera in rezolvarea
problemelor
2.2. Metoda de programare backtracking
— Caracteristici ale problemelor pentru care se poate aplica metoda
backtracking — varianta elementara
— Forma generica a unui algoritm de tip backtracking elementar
— Repere pentru aplicarea metodei backtracking in varianta elementara
in rezolvarea problemelor
— Caracteristici ale problemelor pentru care se poate aplica metoda
backtracking — varianta 1n plan
— Forma generica a unui algoritm de tip backtracking in plan
— Repere pentru aplicarea metodei backtracking in plan in rezolvarea
problemelor

12/12

16/16

Suplimentar, pentru studiul intensiv al disciplinei informatica
2.3 Metoda programarii dinamice
— Caracteristici ale problemelor pentru care se poate aplica metoda
programarii dinamice
— Etape ale abordarii unei probleme prin metoda programarii dinamice
— Repere pentru aplicarea metodei programarii dinamice in rezolvarea
problemelor
— Tehnici de optimizare a spatiului de memorie utilizat
— Tehnica memoizarii

14

3. Algoritmi
fundamentali

3.1. Algoritmi de sortare care utilizeaza metoda Divide et Impera
— Algoritmul de sortare prin interclasare (Merge Sort)
3.2. Algoritmi de prelucrare a grafurilor

— Algoritmul de parcurgere a unui graf in adancime (DFS — Depth
First Search)

— Algoritmul de parcurgere a unui graf in latime (BFS — Breadth
First Search).

— Algoritmul de descompunere a unui graf in componente conexe
folosind o metoda de parcurgere

— Algoritmul de determinare a cate unui lant/drum de lungime
minima de la un varf specificat la fiecare dintre celelalte varfuri ale
grafului utilizadnd parcurgerea BFS

— Algoritmul Roy-Warshall de determinare a matricii
drumurilor/lanturilor dintr-un graf. Descompunerea unui graf in
componente tare-conexe folosind matricea drumurilor

— Algoritmul lui Prim de determinare a unui arbore partial de cost
minim

— Algoritmul Roy-Floyd care determina pentru oricare doua varfuri
ale unui graf ponderat costul drumului de cost minim

— Algoritmul lui Dijkstra care determina pentru un varf specificat,
cate un drum de cost minim catre fiecare dintre celelalte varfuri ale
grafului

2/2

2/2

2/2

11

11

111

2/2

11

4/4

18

Domenii de
continut

Continuturi

Nr. ore
(orientativ)
MI/Intensiv

Suplimentar, pentru studiul intensiv al disciplinei informatica
3.1. Algoritmi de sortare care utilizeazi metoda Divide et Impera —
completare
— Sortarea rapida (Quick sort)
3.2. Algoritmi de prelucrare a grafurilor — completare
— Algoritmul de sortare topologica a varfurilor unui graf orientat
aciclic, utilizand parcurgerea DFS
— Algoritmul Iui Kruskal de determinare a unui arbore partial de cost
minim
— Reprezentarea multimilor disjuncte. Algoritmii Union-Find

12

2

2
2

4. Elemente
de limbaj de
programare

C++/Python

4.1. Limbajul de programare Python
— Elemente de baza ale limbajului
o Lucrul in modul linie de comanda
o Utilizarea unui mediu de programare (IDE) pentru lucrul in
limbajul Python
Conventii de scriere: indentare; denumirea variabilelor, functiilor si
claselor; comentarea codului
Tipuri de date de baza: int, float, bool, str
Citirea datelor de la tastatura si afisarea datelor pe ecran
Operatori aritmetici, logici si de comparatie
Sintaxa structurilor de control: if, elif, else, for, while, break,
continue, pass
Modalitati de tratare a erorilor
Modalitati de citire si scriere utilizand fisiere text
o Biblioteci standard si biblioteci externe
— Functii in limbajul Python
o Definirea functiilor
o Apelarea functiilor
o Returnarea valorilor. Elementul None
o Functii cu parametri impliciti
— Structurile de date lista si sir de caractere
o definirea listei ca o structurd de date secventiald, eterogena si
modificabila
o prezentarea metodelor uzuale pentru tipul de date lista: append,
insert, remove, sort, reverse, count, index
o utilizarea operatiilor fundamentale pentru liste: accesarea
elementelor prin index, parcurgerea prin instructiuni repetitive,
addugarea si eliminarea de elemente, concatenarea listelor si
copierea unei liste
o definirea notiunii de sir de caractere ca secventa imutabila de
caractere
o prezentarea operatiilor uzuale pentru siruri de caractere: find,
replace, split, join, upper, lower
o List comprehension
— Structura de date tuplu
o definirea tuplurilor ca structuri de date secventiale si imutabile
o utilizarea indexarii pentru accesarea elementelor unui tuplu
o aplicarea despachetarii (unpacking) pentru atribuirea multipla
de valori
— Structura de date dictionar
o definirea dictionarelor ca structuri de date bazate pe perechi de
tip cheie-valoare
o utilizarea cheilor pentru accesarea si modificarea valorilor
dintr-un dictionar

O O O O O

o O

51/89
6/8

6/8

20/25

19

Domenii de
continut

Continuturi

Nr. ore
(orientativ)
MI/Intensiv

o aplicarea metodelor specifice dictionarelor (keys, values, items,
get, update) in prelucrari de date
— Structura de date multime
o definirea multimilor ca structuri de date neordonate ce contin
elemente unice
o aplicarea operatiilor fundamentale asupra multimilor (reuniune,
intersectie, diferenta, apartenenta)
o utilizarea metodelor specifice multimilor (add, remove, union,
intersection, difference) in prelucrari de date
Tipuri de memorie in Python (mutabild/imutabild). Shallow copy si
deep copy
Programarea orientata pe obiecte
o Clase si obiecte, cAmpuri si metode
o Constructori si destructor
o Incapsulare
o Mostenire simpla
Interfete grafice in limbajul Python

6/12

14/22

Suplimentar, pentru studiul intensiv al disciplinei informatica
4.1. Limbajul Python. Programarea orientata pe obiecte — completare
o Accesul la membrii unei clase (public, private, protected)
o Mostenire multipla
o Supradefinirea metodelor si a operatorilor. Polimorfism
4.2. Limbajul C++. Biblioteca STL
— Clasele set
— Clasele map
— Clasa priority queue

/6

/6

Clasa a XII-a

Domenii de
continut

Continuturi

Nr. ore
(orientativ)
MI/Intensiv

1. Elemente
de baza in
Inteligenta
Artificiala

1.1. Concepte de baza ale Inteligentei Artificiale
— Domeniile Inteligentei Artificiale
— Invatare Automati — concepte de baza. Tipuri de invatare si tipuri de
probleme asociate

o Invitare nesupervizati. Probleme de tip clusterizare. Algoritmul K-
means

o Invitare supervizati. Probleme de tip regresie si clasificare.
Algoritmul de regresie liniard. Arborele de decizie. Algoritmul
KNN (K-Nearest Neighbors)

o Introducere 1n retele neurale — concepte de baza. Modelul
neuronului artificial. Retele perceptron — caracteristicile modelului
si algoritmul de invétare

— Implicatii etice si sociale ale Inteligentei Artificiale
o Pericole si riscuri asociate [A (bias, confidentialitate, securitate,
autonomie)
Avantaje si riscuri ale IA generative
Impactul asupra pietei muncii si carierei
Aspecte etice si responsabilitatea utilizarii [A
o Reglementiri si bune practici

O O O

22/28

2. Structuri
de date

2.1. Modelul conceptual al unei activitati din lumea reala
— Analiza unei activitati din lumea reald in scopul identificarii datelor
relevante si a relatiilor dintre acestea

18/24

20

Domenii de
continut

Continuturi

Nr. ore
(orientativ)
MI/Intensiv

— Entitati si instante

— Atribute. Optionalitate

— Identificatori unici

— Relatii Intre entitdti. Cardinalitate si optionalitate
oClasificarea relatiilor in functie de cardinalitate (1:1, 1:M, M:M)
o Transferabilitate
oRelatii recursive

— Conventii de reprezentare in diagrama ERD a entitatilor, atributelor,
identificatorilor unici, relatiilor

— Rezolvarea relatiilor M:M

— Normalizarea datelor: 1NF, 2NF, 3NF

— Transformarea modelului conceptual in model fizic
o Tabele, coloane, cheie primara, chei straine (externe), chei unice,
constrangeri
o Conventii de descriere a modelului fizic

— Modele de baze de date

Suplimentar, pentru studiul intensiv al disciplinei informatica

2.1. Modelul conceptual al unei activitiati din lumea realad — completare
— Arce
— Subtipuri
— Modelarea datelor din punct de vedere istoric

/8

3.
Dezvoltarea
aplicatiilor
web

Suplimentar, pentru studiul intensiv al disciplinei informatica
3.1 Elemente de dezvoltare a aplicatiilor web care utilizeaza baze de date
— Concepte de baza ale dezvoltarii aplicatiilor web
o Analiza unei activitati din lumea reald pentru identificare nevoilor
de gestionare
o Diferenta intre backend si frontend
o Formatul de text JSON
— Elemente de Frontend
o Notiunea de interfata grafica
o Alcatuirea schemelor de experienta utilizatorului (user experience
si user stories)
o Proiectarea elementelor vizuale in concordantd cu schemele
alcatuite
o Implementarea unei interfete grafice adecvate in limbajul Python
— Elemente de Backend
o Identificarea functionalitatilor necesare aplicatiei
o Implementarea eficientd a acestor functionalitati in limbajul
Python
o Gestionarea datelor aplicatiei cu ajutorul unei baze de date
o Integrarea inteligentei artificiale intr-o aplicatie

/130

4. Elemente
de limbaj de
programare

4.1. Biblioteci Python pentru Inteligenta artificiala

— Analizarea datelor in Python. Biblioteca pandas

— citirea si scrierea seturilor de date in formate uzuale (CSV, JSON)

— accesarea si modificarea elementelor, coloanelor si randurilor (iloc,
loc, at, iat)

— operatii de baza cu DataFrame-uri: selectare, filtrare, sortare,
adaugare si stergere de coloane sau randuri

— calculul indicatorilor statistici pentru variabilele numerice (minimul,
maximul, media, mediana, abaterea standard, varianta)

— calculul corelatiilor dintre variabile

— detectarea valorilor extreme

— normalizarea si standardizarea datelor

12/28

21

Domenii de
continut

Continuturi

Nr. ore
(orientativ)
MI/Intensiv

— Vizualizarea datelor in Python. Bibliotecile Matplotlib si Seaborn
— trasarea graficului unei functii matematice
— realizarea diagramelor simple (liniare, cu bare, circulare)
— reprezentarea vizuald a distributiilor prin histograme
— adaugarea de etichete, legenda si titlu pentru claritatea graficelor
— afisarea si exportarea graficelor
— Algoritmi pentru invatare automata. Biblioteca scikit-learn
— TImpartirea datelor in seturi de antrenare si testare (train_test split)
— scalarea si transformarea datelor cu StandardScaler, MinMaxScaler,
LabelEncoder, OneHotEncoder
— crearea modelelor de Invatare supervizata si nesupervizata din
biblioteca scikit-learn
— antrenarea si testarea modelelor (fit, predict, score)
— evaluarea performantei modelelor
4.2. Limbajul SQL
— Transformarea modelului fizic intr-o baza de date relationala
— Crearea tabelelor (CREATE TABLE)
— Modificarea structurii unei tabele (ALTER TABLE)
— Stergerea tabelelor (DROP TABLE)
— Definirea cheilor primare si externe, constrangeri (PRIMARY KEY,
FOREIGN KEY, UNIQUE, CHECK)
— Manipularea datelor (DML)
— Inserarea de date (INSERT)
— Modificarea datelor existente (UPDATE)
— Stergerea datelor (DELETE)
— Interogari simple. Selectie, proiectie, ordonare
— Expresii si functii
— Expresii aritmetice si logice
— Functii pe randuri individuale (single-row): text, numerice, date
— Subinterogari in clauza WHERE
— Interogari avansate (JOIN)

20/28

Suplimentar, pentru studiul intensiv al disciplinei informatica
4.1. Biblioteci Python pentru Inteligenta artificiala — completare
— Elemente de algebra liniara. Biblioteca NumPy. Operatii cu tablouri in
NumPy
4.2. Limbajul SQL — completare
— Agregare si grupare
— Functii de agregare (multiple row): COUNT, SUM, AVG, MIN,
MAX
— Gruparea datelor (GROUP BY)
— Filtrarea grupurilor (HAVING)
— Subinterogari corelate
— Crearea si utilizarea secventelor
— Indecsi si sinonime
— Gestionarea drepturilor de acces la baza de date
— QGestionarea tranzactiilor
4.3. Biblioteci Python pentru Dezvoltarea Aplicatiilor Web
— Interactiunea cu o baza de date. Biblioteca sqglite
— crearea si conectarea la o baza de date SQLite
— executarea interogarilor SQL (SELECT, INSERT, UPDATE,
DELETE) din Python
— manipularea rezultatelor interogarilor si gestionarea erorilor
— utilizarea operatiilor CRUD pentru persistarea datelor
— integrarea bazei de date intr-o aplicatie web

/8

/16

22

Domenii de
continut

Continuturi

Nr. ore
(orientativ)
MI/Intensiv

Adaugarea unei interfete grafice. Biblioteca gradio

crearea interfetelor web interactive pentru aplicatii Python
conectarea functiilor Python care interactioneaza cu baza de date la
interfata Gradio

operatii tipice: addugarea de date noi, afisarea datelor existente,
actualizarea sau stergerea unor Inregistrari, folosind interfata web

5.
Dezvoltarea
profesionala

in domeniul
IT

5.1. Repere pentru dezvoltarea profesionalda in domeniul IT si

managementul proiectelor

Cariere in IT. Conexiunea dintre industrie si informatica studiata in
liceu
Principii ale lucrului in echipa
Managementul unui proiect in domeniul IT
o Rolul managementului de proiect
o Etapele unui proiect (ciclul de viata)
o Roluri in managementul de proiect
o Instrumente si metode
Reguli pentru sustinerea unei prezentari de proiect

4/8

23

	Necesitatea unei fundamentări prealabile
	Clasa a IX-a
	Clasa a X-a
	Clasa a XI-a

