
1

Analiza impactului programei de informatică

bazată exclusiv pe limbajul Python

asupra înțelegerii conceptelor de bază de programare

Context

România deţine un avantaj competitiv solid, construit istoric și confirmat internaţional,
fiind recunoscută ca un important furnizor de ingineri software cu pregătire riguroasă în
algoritmică, sisteme și optimizare. Menţinerea și consolidarea acestui avantaj presupun
dezvoltarea continuă a unei mase critice de specialişti cu profil autentic de engineer.
Învăţământul preuniversitar de informatică a avut un rol determinant în această direcţie,
programele actuale contribuind semnificativ la formarea gândirii computaţionale a
absolvenţilor de la specializarea matematică-informatică.

În contextul în care România dezvoltă tehnologie în multiple sectoare, iar industria IT&C
generează peste 8% din PIB și prezintă perspective clare de creştere, investiţia în formarea
specialiştilor din domeniu reprezintă o opţiune strategică. Aceasta este esenţială pentru
asigurarea securităţii economice a ţării pe termen lung.

Elemente de noutate în programa clasei a IX-a disciplina Informatică

Analizând comparativ programele actuale cu programele lansate în dezbatere publică pentru
clasa a IX-a, specializările matematică-informatică, matematică-informatică intensiv şi
ştiinţele naturii, elementul definitoriu de noutate propus constă în utilizarea
limbajului Python ca unic instrument pentru introducerea conceptelor de
programare, inclusiv liste, subprograme, fișiere, interfețe grafice și programare orientată pe
obiecte (POO).

Deși Python este un limbaj popular și versatil, pe care îl considerăm extrem de util și potrivit
pentru a construi exemple complexe de programe cu scop specific (de exemplu jocuri cu
grafică sau inteligență artificială), considerăm că acesta trebuie să apară într-o etapă
ulterioară a procesului de învățare, în care conceptele de bază de programare (de
exemplu, variabile, tipuri de date, tablouri – vectori și matrici, fișiere, etc) sunt deja
sedimentate, iar gândirea critică predomină în rezolvarea problemei date.

În Anexa 1 prezentăm o analiză detaliată a programei puse în dezbatere, care să
demonstreze faptul că alegerea acestui limbaj pentru a preda conceptele în forma și ordinea
din această programă ridică probleme didactice semnificative, împiedicând înțelegerea
naturală a conceptelor de bază ale programării, dar și limitarea sau lipsa abordării unora
dintre concepte, ceea ce duce la superficialitate.

În continuare rezumăm din perspectivă psihopedagogică principalele argumente.

1. Lipsa alinierii la stadiul de dezvoltare cognitivă al elevilor de 14–15 ani

Conform modelelor consacrate ale dezvoltării cognitive (ex. Inhelder & Piaget, 1958; Case,
1992; Sweller, 1994), elevii din clasele de început ale liceului se află în faza de consolidare a
gândirii logico-formale, nu în faza de manipulare naturală a conceptelor abstracte de nivel
înalt. Programa introduce elemente care necesită:

• manipularea simultană a mai multor niveluri de abstracție (tipuri dinamice, obiecte,
instanțe, referințe, structuri dinamice);

2

• operarea cu modele mentale asupra unor mecanisme invizibile (gestionarea
automată a memoriei, tipuri implicite, conversii).

Aceste cerințe depășesc capacitatea cognitivă tipică pentru acest nivel de vârstă, generând
suprasolicitare (cognitive overload), învățare superficială şi confuzie conceptuală.

Didactica programării, fundamentată în ultimele două decenii (Robins, Rountree &
Rountree, 2003; Lister, 2011; Luxton-Reilly, 2016), recomandă introducerea programării
prin: construcție graduală a conceptelor, transparență a mecanismelor, reducerea
complexității inițiale, înțelegerea execuției programului înainte de abstractizare.

2. Caracteristicile limbajului Python maschează concepte fundamentale

Python este accesibil, dar ascunde mecanisme esențiale pentru formarea gândirii
algoritmice. De exemplu:

• citirea datelor produce întotdeauna text, impunând înțelegerea conversiilor de tip
înainte ca elevul să înțeleagă noțiunea de tip de date;

• gestionarea automată a numerelor mari elimină percepția asupra limitelor
calculatoarelor;

• orice variabilă este un obiect, chiar dacă elevul încă nu cunoaște noțiunile de
referință, instanțiere sau spațiu de memorie.

Această opacitate face dificilă construirea unor modele mentale corecte, aspect esențial în
primele etape ale învățării programării.

3. Introducerea prematură a Programării Orientate pe Obiecte

POO este un cadru conceptual care presupune abstractizare, clasificare, modelare și
relaționare între entități – procese cognitive de nivel înalt.

Literatura de specialitate subliniază că POO este dificilă chiar și la nivel universitar pentru
studenții începători. Introducerea sa la clasa a IX-a, fără un fundament solid al programării
structurate, contravine recomandărilor din literatura de specialitate și generează
suprasolicitare cognitivă. Elevii aflați încă în procesul de învățare a funcțiilor nu au resursele
necesare pentru a integra noțiuni precum clase, metode și instanțe.

4. Suprasarcina curriculară în raport cu timpul disponibil

Două ore pe săptămână sunt insuficiente pentru parcurgerea unui volum atât de complex,
respectiv consolidarea cunoștințelor şi exersarea prin activități practice.

Prea multe concepte introduse prea rapid duc la fragmentare, pierderea coerenței și
imposibilitatea asigurării unei învățări semnificative.

La nivel introductiv, o înţelegere solidă a conceptelor fundamentale de programare
presupune expunerea elevilor la numeroase activităţi aplicative şi la exersarea sistematică a
strategiilor de rezolvare a problemelor în contexte variate. Programa aflată în dezbatere
include însă un volum considerabil de concepte teoretice — adesea implicite sau insuficient
explicitate — în timp ce oferă relativ puţini algoritmi şi exemple practice care să faciliteze
transferul acestor concepte în activităţi concrete de învăţare.

Trebuie să menţionăm că suprasarcina curriculară este semnificativ mai mare pentru
specializarea Ştiinţele naturii. Deşi în planul cadru disciplina Informatică are alocată o
singură oră la această specializare, în timp ce la specializarea Matematică-informatică
alocarea este de 2 ore, diferenţele dintre programele celor două specializări sunt minore
(necesitând cel mult 5 ore), singurele elemente de conţinut suplimentare la matematică-
informatică fiind:

3

• noţiunile de coadă şi stivă (doar la nivel de concept, fără operaţii specifice cu aceste
structuri de date);

• transformarea unui număr dintr-o bază de numerație în altă bază de numerație;

• sortarea elementelor unei liste prin metoda bulelor.

5. Abordare excesiv de orientată teoretic, în detrimentul aplicabilităţii practice

Structura actuală a programei este excesiv de orientată spre componenta teoretică, în
detrimentul aplicabilităţii practice. Chiar și sugestiile metodologice — care precizează că
"activitățile din cadrul instruirii teoretice se desfășoară, de regulă, în săli de clasă, dotate
cu tablă interactivă, pentru exemplificarea programelor pe calculator, iar activitățile din
cadrul instruirii practice se desfășoară, de regulă, în laboratorul de informatică" —
subliniază indirect această disproporţie. În predarea informaticii, fiecare concept teoretic
trebuie consolidat prin aplicare imediată în contexte diverse, astfel încât învăţarea să devină
funcţională și relevantă.

Demersul didactic trebuie să fie centrat pe elev, vizând formarea capacităţii acestuia de a
transfera și aplica conceptele teoretice în situaţii practice. Dacă accentul lecţiei rămâne
predominant pe demonstraţiile profesorului, rezultatul va fi, în cel mai bun caz, dezvoltarea
competenţei elevilor de a înţelege soluţiile prezentate, nu și de a le reproduce sau adapta
autonom în contexte noi. Din acest motiv, desfăşurarea orelor de informatică în
laborator este esenţială pentru formarea competenţelor specifice domeniului.

Concluzie

Din perspectivă pedagogică și cognitivă, ordinea și nivelul de complexitate propuse de
programa actuală nu sunt optim adaptate profilului elevilor de clasa a IX-a. Un demers
didactic care introduce rapid concepte avansate, fără fundamentare, riscă să formeze
modele mentale incorecte despre funcționarea programelor.

Construcția competențelor de programare are nevoie de o abordare secvențială,
transparentă și adecvată vârstei, în care conceptele fundamentale sunt consolidate înaintea
celor avansate. Reechilibrarea programei în această direcție ar crește semnificativ eficiența
procesului de învățare și ar asigura premisele pentru o formare autentică în domeniul
informaticii.

Soluţia propusă – Progresia C++ → C++ și Python → Python și SQL

Anexa 2 conţine o propunere schematică de programă pentru disciplina informatică pentru
specializarea matematică-informatică, cu diferenţiere pentru matematică informatică
intensiv pentru clasele IX-XII. Documentul include competenţele generale vizate şi
conţinuturile propuse, cu o detaliere orientativă a alocării orare, pentru a valida fezabilitatea
atingerii competenţelor specifice în bugetul de timp alocat.

Principiile programei propuse

• Propunerea de programă pe care o prezentăm este structurată pe principiul progresiei
graduale și al relevanței în raport cu finalitățile educaționale și cu cerințele pieței
muncii.

• Programa urmărește formarea unei gândiri computaționale și o înțelegere profundă a
conceptelor fundamentale ale programării pentru toți elevii.

• Programa are o construcție organică, pornind de la fundamente și evoluând natural
spre aplicabilitate practică.

4

Structură generală a programei propuse, din perspectiva limbajelor
de programare

Clasele a IX-a şi a X-a: limbajul C++

Limbajul C++ este utilizat pentru formarea riguroasă a gândirii algoritmice și pentru
înțelegerea aprofundată a mecanismelor fundamentale ale programării: variabile, tipuri de
date, structuri de control, funcții, pointeri, recursivitate, structuri de date.

Clasa a XI-a: C++ și Python

În această etapă, se continuă aprofundarea algoritmicii și a structurilor de date complexe
prin C++. În egală măsură, se introduce limbajul Python, deoarece, la ora actuală, Python
este un limbaj dominant în domenii moderne: Inteligență Artificială, Data Science, Cloud,
automatizare. Abordarea limbajului Python va fi accesibilă pentru elevii de clasa a XI-a,
care au deja formate competenţe în domeniul algoritmicii şi programării prin intermediul
limbajului C++.

Clasa a XII-a: Python și SQL

În ultimul an de liceu, accentul se mută de la algoritmica fundamentală spre aplicabilitate
și interdisciplinaritate. Python este utilizat pentru introducerea în domeniul Inteligenței
Artificiale, prin biblioteci specializate (NumPy, pandas, Matplotlib, scikit-learn), care
permit experimentarea directă cu concepte precum regresie, clasificare, rețele neuronale.
În paralel, limbajul SQL este introdus pentru studiul bazelor de date, reprezentând
standardul industriei și un instrument indispensabil în orice carieră din domeniul IT.

Progresia C++ → C++ și Python → Python și SQL asigură echilibrul dintre rigoarea
algoritmică și aplicabilitatea practică, oferindu-le elevilor atât competențe fundamentale
(structuri de date, optimizare, gândire algoritmică), cât și abilități moderne, aliniate cu
cerințele actuale ale pieței muncii și ale învățământului superior de profil.

C++ versus Python – avantaje versus riscuri

Concept C++ Python Impact educațional

Citirea
datelor

Explicită,
tipuri fixe

Totul ca șir de
caractere

În C++, elevul învață structuri și tipuri înainte de
concepte avansate.

Rigoare
Strict, erori
obligatoriu
rezolvate

Flexibil, codul
poate
funcționa chiar
cu erori

În C++, atenție la detalii și disciplină algoritmică.

În Python, elevii dezvoltă mentalitatea „merge și
așa”, ceea ce slăbește atenția și ordonarea
gândirii.

Structuri de
date

Tablouri fixe,
clare

Liste de liste,
dicționare,
clase

C++ dezvoltă înțelegerea logicii interne. În
Python concepte fundamentale ale programării
orientate pe obiect sau structurilor de date
avansate sunt introduse prea devreme, la un nivel
superficial, ceea ce împiedică înțelegerea solidă a
fundamentelor disciplinei.

Mutabilitate
Clară,
explicită

Amestec de
mutabile și
imutabile

C++ învață gestionarea memoriei și referințelor.
Python poate crea confuzie în manipularea
datelor și referințelor.

5

Perspective pe termen lung

Limbajele de programare sunt volatile. Python este un limbaj apărut recent comparativ cu
C-ul, în timp ce limbajele C și C++ sunt folosite în industrie și în educație de peste 50 de ani.
Ele au rezistat de-a lungul timpului și ne oferă certitudinea că vor rămâne relevante și peste
15–20 de ani. Informatica la liceu nu trebuie să urmărească moda sau limbajele «la modă».
Scopul nostru este să formăm concepte solide și gândire algoritmică. Dacă construim pe un
teren schimbător, cum este Python-ul, riscăm să formăm elevi care înțeleg limbajul de azi,
dar nu au fundamentele necesare pentru viitor.

Un alt avantaj al C și C++ este că formează rapid capacitatea de adaptare. Majoritatea
limbajelor moderne – Java, C#, Go sau Rust – sunt inspirate direct din C/C++. Elevul care
învață C++ înțelege ușor aceste limbaje și poate să se adapteze rapid la cerințele industriei.

Formarea solidă începe cu un fundament stabil. Alegerea limbajului C/C++ nu este despre
nostalgie, ci despre responsabilitate: este despre a pregăti programatori care pot înțelege,
construi și inova, indiferent de ce limbaj va fi la modă mâine.

Într-un timp relativ scurt limbajele vor fi înlocuite de interfețele conversaționale. Aplicațiile
vor fi realizate fără a scrie cod într-un limbaj, ci adresându-ne AI-ului în limbaj natural.
Întrebarea ce urmează firesc este “Cum sa conversezi cu AI pentru crearea unor aplicații
dacă nu ai o înțelegere profundă a mecanismelor fundamentale ale programării?”

Rezumând, C++ oferă rigurozitate, claritate și disciplină, iar Python trebuie folosit
complementar, nu ca înlocuitor. Susținem utilizarea adecvată, utilă și eficientă a
limbajului Python pentru dezvoltarea de aplicații în domeniile pentru care acesta a fost
conceput. În același timp, considerăm că limbajul C++ trebuie valorificat în mod prioritar
pentru consolidarea fundamentelor programării.

Matematică-informatică intensiv vs neintensiv

Programele școlare aflate în prezent în dezbatere publică prevăd introducerea limbajului C++
în clasa a IX-a la specializarea Informatică intensiv, în paralel cu studiul limbajului Python.
Această abordare generează o suprasarcină cognitivă pentru elevii de la profilul intensiv,
chiar dacă aceștia beneficiază de un număr dublu de ore față de colegii lor de la neintensiv.
Este important de subliniat că ponderea elevilor înscriși în clase cu regim intensiv este
relativ redusă la nivel național.

În prezent, facultățile de profil din România (informatică, automatică și calculatoare,
cibernetică) formează aproximativ 10.000 de studenți anual. Totuși, pentru perioada 2026–
2035, proiecțiile arată că economia digitală va necesita un număr semnificativ mai mare de
specialiști IT cu formare de nivel engineer. În acest context, devine esențial ca învățământul
preuniversitar să consolideze dezvoltarea gândirii computaționale în rândul elevilor de la
specializarea matematică-informatică neintensiv. Formarea competențelor specifice
disciplinei Informatică este nu doar o premisă pentru accesul elevilor la cariere în domeniul
IT, ci și o resursă intelectuală valoroasă pentru orice domeniu tehnic, precum și pentru alte
domenii, de exemplu științele medicale.

Concluzie – misiunea educațională

România trebuie să formeze tineri capabili să definească viitorul tehnologic, nu doar
utilizatori de software. Folosind exclusiv Python, riscăm să formăm elevi care „se descurcă
azi”, dar nu au baza necesară pentru viitor, formăm simpli utilizatori de cod din biblioteci.

În cele din urmă, adevărata provocare este aceasta: ce vrem ca școala să construiască
pentru România – simpli utilizatori de software sau tineri capabili să definească viitorul
acestei țări prin inovație sau, și mai mult, creatori de tehnologie?

6

Anexa 1.

Analiza detaliată a impactului programei de informatică

bazată exclusiv pe limbajul Python

asupra înțelegerii conceptelor de bază de programare

Programa de informatică pentru clasa a IX-a (specializarea matematică-informatică -
neintensiv și intensiv) propune utilizarea limbajului Python pentru introducerea
conceptelor de programare, inclusiv liste, subprograme, fișiere, interfețe grafice și
programare orientată pe obiecte (POO). Deși Python este un limbaj popular și versatil, pe
care îl considerăm extrem de util și potrivit pentru a construi exemple complexe de
programe cu scop specific (de exemplu jocuri cu grafică sau inteligență artificială),
considerăm că acesta trebuie să apară într-o etapă ulterioară a procesului de învățare, în
care conceptele de bază de programare (de exemplu, variabile, tipuri de date, tablouri
- vectori și matrici, fișiere, etc) sunt deja sedimentate, iar gândirea critică predomină
în rezolvarea problemei date.

Propunem o analiză detaliată a programei publicate, care să demonstreze faptul că alegerea
acestui limbaj pentru a preda conceptele în forma și ordinea din această programă ridică
probleme didactice semnificative, împiedicând înțelegerea naturală a conceptelor de bază
ale programării, dar și limitarea sau lipsa abordării unora dintre concepte, ceea ce duce la
superficialitate.

1. Absența unei introduceri solide în limbajul de programare suport

Programa propusă nu evidențiază sau nu introduce sistematic elementele fundamentale ale
limbajului, ceea ce poate genera confuzie pentru elevii aflați la început de drum. În mod
particular, sunt neglijate următoarele aspecte:

a) Concepte / noțiuni fundamentale:

● Conceptul de variabilă și modul de lucru al memoriei - elevii trebuie să
înțeleagă că variabilele nu sunt simple etichete, ci spații în memorie care stochează
valori.

● Conceptele despre tipurile de bază și caracteristicile lor - diferențierea între
int, float, string etc., precum și comportamentul specific al fiecărui tip în operații.

● Diferența dintre valoare și referință în Python - înțelegerea modului în care
obiectele mutable și imutabile sunt manipulate în memorie.

● Domeniul de valabilitate al variabilelor (local vs global) - impactul asupra
vizibilității și duratei de viață a valorilor stocate.

● Erori de sintaxă și comportamentul codului la rulare - elevii trebuie să
înțeleagă că orice greșeală sintactică împiedică rularea programului și generează
mesaje de eroare explicite, care indică tipul de problemă și locația acesteia. Aceasta
oferă oportunitatea de a învăța debugging-ul de bază și importanța respectării regulilor
limbajului.

● Mecanismul de execuție în Python - cum interpretorul citește și execută codul
linie cu linie, și ce înseamnă ca programul să fie interpretat în timp real, evidențiind
diferențele - avantaje și dezavantaje - față de limbajele compilate.

Această abordare le permite elevilor să înțeleagă nu doar cum se scrie codul, ci și ce se
întâmplă când codul nu respectă regulile limbajului, oferind context pentru erori și
debugging înainte de a trece la concepte mai abstracte, precum liste, clase și obiecte.

7

b) Instrucțiuni de control:

Structurile fundamentale de control (while, for, if-else) trebuie să fie centrul dezvoltării
gândirii algoritmice, nu elemente secundare sau introduse derivativ. Acestea reprezintă
baza gândirii algoritmice, deoarece permit elevilor să definească fluxul logic al programului.
Fără o înțelegere solidă a acestor structuri, elevii riscă să scrie cod care „funcționează” doar
în cazuri specifice, fără să înțeleagă principiul general.

În plus, elevii trebuie să fie familiarizați cu modul corect de utilizare a instrucțiunilor de
control și cu subtilitățile acestora:

● Bucle for și while: cum se scrie sintactic corect o buclă, ce reprezintă expresia de
condiție și cum se modifică variabila de control; de ce bucla poate include un else și ce
înseamnă acesta în contextul Python (executat dacă bucla se termină normal, fără
break).

● Instrucțiunile break și continue: cum break oprește imediat bucla curentă, iar
continue sare peste iterația curentă și trece la următoarea, și cum utilizarea lor
influențează fluxul de execuție.

● Instrucțiunea if-else: cum se definesc condițiile logice, cum se interpretează ramura
else și cum poate fi utilizată pentru a acoperi toate cazurile posibile; diferența dintre if-
elif-else și mai multe instrucțiuni if independente.

● Structuri combinate: cum se pot include bucle în interiorul condițiilor și condiții în
interiorul buclelor, pentru a construi algoritmi mai complecși.

Astfel, elevii nu doar că învață sintaxa, dar și înțeleg logica fiecărei structuri de control și
modul în care instrucțiunile speciale (break și continue) modifică fluxul algoritmului,
dezvoltând gândirea algoritmică necesară pentru programe corecte și eficiente.

Astfel, învățarea acestor structuri trebuie să includă nu doar sintaxa, ci și
comportamentul programului la rulare, precum și modalitățile de
diagnosticare a erorilor.

c) Sintaxa vs semantica limbajului:

Pe lângă instrucțiunile de control, elevii trebuie să înțeleagă diferența dintre sintaxa
limbajului și semnificația conceptuală a codului. Aceasta include:

● Utilizarea și instalarea pachetelor externe, pentru a vedea cum codul poate fi
extins și modularizat;

● Organizarea codului în mai multe fișiere, pentru a înțelege principiile de
modularizare și reutilizare;

● Principiile de naming, indentare și stil (coding style), care, deși nu sunt tratate
implicit în programă, sunt esențiale pentru dezvoltarea unui stil de programare corect
și coerent care asigură lizibilitatea codului.

Fără o prezentare clară a acestor fundamente, elevii riscă să învețe doar sintaxa izolată,
fără să înțeleagă conceptele care stau la baza funcționării limbajului și fără să poată aplica
cunoștințele în contexte noi.

Lipsa unei introduceri metodice și progresive asupra instrucțiunilor de control și a
semanticii limbajului are efecte directe asupra procesului de învățare:

● Elevii memorează comenzi și sintaxă fără a înțelege principiile sau logica de
funcționare;

● Capacitatea de a transfera cunoștințele către alte limbaje este redusă, deoarece nu au
dezvoltat schemă conceptuală și gândirea critică;

8

● Apar dificultăți în debugging și în rezolvarea problemelor, deoarece elevii nu au
exemple și explicații clare pentru elementele fundamentale de sintaxă și structură.

Consolidarea acestor noțiuni fundamentale înainte de a introduce concepte mai abstracte,
precum clasele și obiectele, este esențială pentru succesul pedagogic în predarea
programării.

2. Citirea datelor în Python

Un aspect problematic în predarea Python este modul în care limbajul tratează tipurile de
date. Toate datele citite de la tastatură prin funcția input() sunt inițial șiruri de caractere (str
- strings), chiar dacă elevul introduce valori numerice. Aceasta generează o serie de
dificultăți pedagogice concrete:

● input() returnează întotdeauna un string, nu un număr.

● Pentru a efectua operații numerice, este necesară conversia explicită: int(input()) sau
float(input()).

● Conceptul de conversie de tip nu este intuitiv și rămâne neclar dacă elevul nu a discutat
anterior despre tipurile de date și despre reprezentarea internă a acestora.

Astfel, problema nu este doar de sintaxă, ci de semnificație fundamentală: elevul trebuie să
înțeleagă ce reprezintă fiecare tip și de ce anumite operații nu sunt permise fără conversie,
mai ales în contextul unui limbaj precum Python, care nu impune declararea explicită a
tipului de date pentru variabile. Această flexibilitate sintactică poate masca diferențele reale
dintre tipuri și poate genera confuzie.

Necesitatea unei fundamentări prealabile

Înainte de a introduce citirea și procesarea datelor în Python, este esențial ca elevii să aibă o
înțelegere conceptuală clară:

● Tipurile de date: ce este un șir de caractere? ce este un întreg? Cum se diferențiază
și care sunt comportamentele caracteristice ale fiecăruia?

● Reprezentarea internă: De ce sunt diferite aceste tipuri și ce înseamnă conversia
de tip (type casting)?

● Domeniul de aplicabilitate: Când folosim strings și când folosim numere?

● Operații specifice: De ce putem concatena strings, dar nu putem adăuga un număr
la un string fără conversie?

Compararea cu alte limbaje de programare

Dificultatea implicită a tipurilor în Python contrastează cu alte limbaje tradiționale:

● C/C++: Tipurile sunt explicite la declarare (int x = 5; char s[] = "hello";), ceea ce
evidențiază imediat diferențele între date.

● Pascal: Tipurile sunt declarate vizibil (var x: integer; s: string;), facilitând înțelegerea
conceptuală pentru programatorul începător.

● Python: x = 5 și s = "hello" par identice din punct de vedere sintactic, mascând
diferențele fundamentale dintre tipuri.

● În contextul prelucrării cifrelor unui număr, programa actuală poate crea confuzii
semnificative. Citirea numerelor ca stringuri prin input() face ca orice număr introdus
să fie inițial un șir de caractere. Aceasta poate duce la confuzie atunci când elevii
încearcă să facă operații aritmetice sau să acceseze cifre individuale.

9

a = input("a = ")
b = input("b = ")
print(a + b)
a = 4
b = 5
45

 Prin urmare, un concept fundamental și simplu, precum citirea datelor devine
strâns interconectat de altele mai complexe și aduce un efort cognitiv nenecesar în
primele programe pe care considerăm că trebuie să le facă un elev.

3. Introducerea Programării Orientate pe Obiecte în clasa a IX-a

Programarea Orientată pe Obiecte (POO) este prezentată în literatura de specialitate drept
o paradigma de programare avansată care necesită baze solide de programare imperativă
pentru a putea fi înțeleasă. Studiile lui Bennedsen și Caspersen [1, 2] arată că nivelul de
abstractizare al studenților nu este un predictor clar al succesului în învățarea POO la nivel
introductiv, ceea ce sugerează că inclusiv persoanele cu abilități cognitive dezvoltate pot
întâmpina dificultăți semnificative în înțelegerea conceptelor cheie din POO, dacă nu
stăpânesc conceptele de bază ale programării. Acest rezultat poate fi interpretat ca o dovadă
că introducerea POO la clasa a IX-a, când elevii abia încep să învețe bazele programării și
să-și dezvolte gândirea algoritmică, riscă să fie prematură. Capacitatea de abstractizare a
elevilor nu garantează înțelegerea corectă a conceptelor, iar dificultatea de a aplica noțiuni
precum clase, obiecte, metode o să apară în rândul unui număr foarte mare de elevi. Mai
mult, studiile lui Bennedsen și Caspersen [1, 2] sugerează că succesul în programare depinde
de alți factori, precum abilitatea practică de a scrie cod și înțelegerea logicii programării.
Astfel, pentru elevii de liceu, o abordare progresivă, care să consolideze mai întâi conceptele
programării imperative și gândirea algoritmică, urmată apoi de explicarea conceptelor de
Programare Orientată pe obiecte abia în clasa a XI-a, ar putea fi mult mai eficientă și mai
realistă decât introducerea directă a unor concepte POO pe care nu le vor înțelege.

Clasele și obiectele necesită o înțelegere prealabilă a tipurilor de date, a structurii memoriei
și a modului de lucru al limbajului de programare. Elevii de 14-15 ani se află, conform lui
Piaget, la stadiul operațional concret, iar gândirea abstractă nu este suficient dezvoltată
pentru a asimila rapid conceptele de clasă, membri ai clasei (date și metode) sau obiecte. De
asemenea, abia în clasa a IX-a sunt predate subprogramele (funcțiile), iar elevii nu vor avea
timp să experimenteze suficient cu acestea, astfel că nu ne putem aștepta să facă distincția
între o funcție și o metodă sau să înțeleagă pe deplin rolul încapsulării datelor și motivul
pentru care este util să lucrăm cu clase. Fără această experiență practică anterioară,
introducerea POO riscă să fie confuză și să nu atingă obiectivele de învățare.

Modelul conceptual liniar - listă

Programa solicită lucrul cu liste (secțiunile 1.1 și 3.5) și cu clasa list din Python (secțiunea
3.5), însă evită explicarea explicită a naturii orientate pe obiecte a acestora. O abordare
pedagogică mai eficientă ar fi introducerea conceptului de tablou pe baza următoarelor
variante:

• Utilizarea pseudocodului care permite lucrul cu tablouri abstracte de valori, fără detalii
de implementare sau reprezentare

• Utilizarea unui limbaj procedural (C, C++) unde tablourile sunt structuri fundamentale,
cu semantică bine definită.

Pe lângă liste, tuplurile ar putea fi prezentate în paralel, deoarece sunt utile în multe
contexte practice în Python. De exemplu, o funcție poate returna mai multe valori simultan
folosind un tuplu, cum ar fi:

10

def min_max(lista):
 return min(lista), max(lista)

rezultat = min_max([4, 7, 1, 9]) # conține tuplul (1, 9)

Tuplurile sunt imutabile și permit elevilor să înțeleagă diferența dintre date mutabile și
imutabile, concept important în proiectarea programelor și în înțelegerea
comportamentului funcțiilor.

De asemenea, programa omite conceptul de range, concept care este foarte util pentru
generarea de secvențe și pentru construirea de bucle for simple, clare și eficiente:

for i in range(1, 10, 2):
 print(i)

Un alt element lipsă este conceptul de excepție, deși unele metode ale listelor predefinite
pot genera erori (de exemplu, list.index() poate arunca excepția ValueError dacă elementul
nu există). Explicarea modului de prindere și tratare a excepțiilor (try - except) ar fi utilă
pentru:

● Înțelegerea erorilor și prevenirea opririi neașteptate a programului;

● Dezvoltarea gândirii defensive în programare;

● Introducerea treptată a unui concept fundamental al limbajelor moderne: manipularea
controlată a situațiilor neprevăzute.

4. Lipsa conștientizării limitărilor tehnologice ale unui calculator

Un alt efect major al utilizării exclusive a limbajului Python în programă este pierderea unei
componente esențiale a alfabetizării informatice: conștientizarea limitărilor reale
ale resurselor pe un calculator și a modului în care acestea influențează logica și stilul
programării.

Python ascunde aproape în totalitate detalii legate de: gestionarea memoriei, tipurile
primitive, limitele numerice, structurile de date statice, reprezentarea internă a datelor,
costul real al operațiilor.

În special, modul în care Python gestionează numerele întregi creează impresia
falsă că acestea sunt “infinite”, întrucât:

● În locul unui tip int pe 32 sau 64 de biți, Python folosește un tip de dimensiune
arbitrară (arbitrary-precision integer).

● Elevul nu se lovește niciodată de overflow, depășiri de interval sau reprezentări
limitate,

● Elevul nu înțelege că în computerele reale orice număr are un cost de stocare și un
cost de procesare dependent de mărimea lui.

Această proprietate, deși convenabilă în proiecte avansate, distorsionează în clasa a IX-
a înțelegerea naturală a limitelor tehnice ale unui calculator, ducând la
convingerea că:

● Orice număr, oricât de mare, poate fi procesat instantaneu.

● Operațiile matematice nu se degradează odată cu mărimea datelor.

● Resursele de memorie sunt nelimitate și gratuite.

Prin contrast, în limbaje precum C și C++, elevii descoperă natural și firesc:

11

● că un int are o limită;

● că depășirea limitei produce overflow;

● că alegerea tipului potrivit este o decizie esențială;

● că mulțimea de valori reprezintă o constrângere tehnică reală;

● că datele ocupă memorie fizică concretă.

Aceste situații formează reflexe corecte despre cum funcționează un calculator și
reprezintă baza oricărei înțelegeri ulterioare despre performanță, optimizare, structuri de
date și arhitectură.

Folosirea exclusivă a Python în clasa a IX-a elimină orice contact cu limitările
numerice și de memorie ale unui calculator real, ceea ce poate crea un model mental
eronat și greu de corectat în anii următori.

5. Complexitatea nealiniată a programei propuse

Programa de informatică pentru clasa a IX-a introduce simultan un număr foarte mare
de concepte avansate, într-un ritm accelerat și într-un limbaj care ascunde mecanisme
fundamentale de programare. Această abordare generează o complexitate nealiniată cu
nivelul de dezvoltare cognitivă al elevilor de 14-15 ani și cu volumul limitat al orelor (2
ore/săptămână).

În mod concret, elevii sunt puși în situația de a gestiona în paralel:

● noțiuni fundamentale despre variabile, tipuri de date și memorie;

● manipularea obiectelor complexe precum listele Python;

● conversii explicite între tipuri pentru citirea datelor;

● structurarea unui program în funcții și fișiere;

● comportamente interpretate linie cu linie;

● noțiuni de programare orientată pe obiecte (clase, obiecte, metode);

● interfețe grafice și alte concepte care presupun un grad ridicat de abstractizare.

Această suprapunere de niveluri conceptuale profund diferite conduce la o suprasarcină
cognitivă documentată în literatura de specialitate (“extraneous cognitive load” [3]), ceea
ce afectează în mod direct capacitatea elevilor de a învăța în mod semnificativ. În loc să
evolueze progresiv de la noțiuni simple la concepte mai avansate, elevii sunt expuși
simultan la elemente care, în mod firesc, ar trebui distribuite pe parcursul a doi sau chiar
trei ani de studiu

Menționăm că anumite lucruri nu pot evitate a fi explicate, pentru a putea înțelege sau folosi
un concept sau o construcție în Python. Dăm următorul exemplu: un element suplimentar
care complică procesul de învățare este faptul că în Python nu există cu adevărat tipuri
de bază simple.

Chiar și operații aparent banale, precum:

x = 5

nu reprezintă stocarea unui simplu număr întreg, așa cum ar fi în limbaje precum C sau C++.

În realitate, această instrucțiune:

● Creează un obiect al clasei int.

● Instanțiază o structură complexă cu funcționalitate internă bogată.

12

● Alocă dinamic memorie pentru un obiect cu dimensiune arbitrară.

● Creează o referință către acest obiect în spațiul de nume curent.

Așadar, cea mai simplă operație din programare – definirea unei variabile întregi –
implică în Python un mecanism orientat pe obiecte, pe care elevul nu îl conştientizează
și nu îl poate înțelege în primele săptămâni de liceu. Menționăm că a evita explicația
comportamentului din spate pentru aceste construcții fundamentale, reprezintă o
greșeală pedagogică fundamentală.

Referinţe bibliografice:

[1] Bennedsen, J., & Caspersen, M. E. (2006). Abstraction ability as an indicator of success
for learning object-oriented programming?. ACM Sigcse Bulletin, 38(2), 39-43.

[2] BENNEDSEN, Jens; CASPERSEN, M. A Model-First Approach to Teaching Introductory
Object-Orientation. In: Workshop on Learning and Teaching Object-Orientation-
Scandinavian Perspectives. Oslo. 2003.

[3] Studiu la nivelul UE: “Extraneous cognitive load”, https://data.europa.eu/apps/data-
visualisation-guide/extraneous-cognitive-load

[4] WATSON, Christopher; FREDERICK, W.B. Li Failure Rates in Introductory
Programming Revisited,
https://drive.google.com/file/d/13HjokoQiFZozg9wucyT2sazSPtZDDWEE/view?usp=share_link

https://data.europa.eu/apps/data-visualisation-guide/extraneous-cognitive-load
https://data.europa.eu/apps/data-visualisation-guide/extraneous-cognitive-load
https://drive.google.com/file/d/13HjokoQiFZozg9wucyT2sazSPtZDDWEE/view?usp=share_link

13

Anexa 2.

Propunere schematică de programă

pentru disciplina informatică

Clasele IX-XII

Curriculum de specialitate (CS)

Filiera teoretică, profilul real, specializarea matematică-
informatică şi matematică-informatică, intensiv informatică

construită pe paradigma

C++ → C++ și Python → Python și SQL

COMPETENȚE GENERALE (CG)

CG1 Descrierea caracteristicilor esențiale ale principalelor concepte, structuri de date, metode și

strategii utilizate în informatică

CG2 Explicarea mecanismelor de funcționare și a modului de utilizare a principalelor concepte, structuri

de date, metode și strategii informatice în contexte diverse

CG3 Aplicarea algoritmilor fundamentali, utilizând un limbaj de programare adecvat, în funcție de

natura problemelor de rezolvat

CG4 Analizarea unor activități din lumea reală în vederea organizării optime a datelor relevante, a

descompunerii problemei date în subprobleme, precum și distingerea pașilor necesari prelucrării

datelor pentru rezolvarea acestora

CG5 Evaluarea corectitudinii şi a eficienței unui program, în raport cu restricţiile specifice problemei

de rezolvat

CG6 Dezvoltarea de soluții informatice originale pentru probleme din contexte ştiinţifice sau cotidiene,

cu testarea acestora pe date concrete

CONȚINUTURI ALE ÎNVĂȚĂRII

Clasa a IX-a

Domenii de

conținut
Conținuturi

Nr. ore

(orientativ)

MI/Intensiv

1.

Fundamente

ale

programării

1.1 Elemente de bază ale dezvoltării programelor

– Analiza unei probleme în scopul identificării datelor de intrare,

datelor de ieşire şi a modului de organizare eficientă a datelor

– Principiile programării structurate şi modalitatea de reprezentare a

algoritmilor în pseudocod

– Etapele dezvoltării aplicaţiilor utilizând un mediu de programare

(editarea programului, compilarea programului şi corectarea erorilor

de sintaxă, execuţia programului şi depanarea programului – debug)

– Principii şi metode în elaborarea testelor de evaluare pentru un

program

– Elemente de analiză a complexităţii algoritmilor

1/1

8/10

1/1

1/1

2. Structuri

de date

2.1. Tablouri unidimensionale (vectori)

– Caracteristici ale tablourilor unidimensionale

– Modalităţi de declarare a tablourilor unidimensionale

– Modalitatea de calcul a dimensiunii spaţiului de memorie alocat unui

tablou unidimensional

– Modalitatea de acces la elementele unui tablou unidimensional

– Repere pentru realizarea parcurgerii tablourilor unidimensionale

1/1

14

Domenii de

conținut
Conținuturi

Nr. ore

(orientativ)

MI/Intensiv

– Repere pentru modificarea unui tablou prin inserări/ştergeri de

elemente

– Repere pentru verificarea unei proprietăţi valabile pentru toate

elementele unui tablou unidimensional, respectiv a existenţei unui

element care are o anumită proprietate

– Repere pentru utilizarea vectorilor caracteristici în rezolvarea

problemelor

– Repere pentru utilizarea vectorilor de frecvenţă în rezolvarea

problemelor

– Repere pentru prelucrarea secvenţelor de valori citite succesiv, cu sau

fără memorare în tablouri unidimensionale (minime/maxime, secvenţe

maximale cu o anumită proprietate)

Suplimentar, pentru studiul intensiv al disciplinei informatică:

2.1. Tablouri unidimensionale (vectori) – completare

– Repere pentru utilizarea sumelor parțiale în tablouri unidimensionale

în rezolvarea problemelor

– Repere pentru utilizarea tablourilor de diferenţe (difference-arrays)

în rezolvarea problemelor

– Repere pentru prelucrarea secvenţelor de lungime fixată

– Repere pentru implementarea operaţiilor pe numere mari (adunare,

scădere, produsul dintre un număr mare şi un număr mic,

determinarea câtului şi restului împărţirii unui număr mare la un

număr mic, produsul a două numere mari)

– Repere pentru aplicarea tehnicii Two-pointers în rezolvarea

problemelor

1/1

1/1

2/2

2/2

2/4

/4

/4

/4

/8

/6

3. Algoritmi

fundamentali

3.1. Algoritmi de prelucrare a datelor numerice

– Algoritmi de prelucrare a cifrelor numerelor naturale scrise în baza 10

(extragerea tuturor cifrelor unui număr natural, accesarea,

modificarea, inserarea, respectiv eliminarea unei cifre de pe o poziţie

specificată, construirea unui număr prin adăugarea unor cifre într-o

ordine specificată)

– Algoritmi de prelucrare a divizorilor numerelor naturale (algoritmul

de identificare a divizorilor unui număr natural, algoritmul de

descompunere a unui număr natural în factori primi, algoritmul de

testare a primalităţii numerelor naturale, algoritmul de determinare a

celui mai mare divizor comun, respectiv a celui mai mic multiplu

comun)

– Algoritmi de calcul pentru a unor expresii matematice (sume,
factoriale, puteri)

– Algoritmi de generare a şirurilor definite prin relaţie de recurenţă

3.2. Algoritmi de prelucrare a tablourilor unidimensionale

– Algoritmul de căutare secvenţială

– Algoritmul de căutare binară

– Algoritmul de sortare prin selecţia minimului/maximului (Selection

sort)

– Algoritmul de interclasare a două tablouri unidimensionale

– Algoritmul de determinare a numerelor prime mai mici decât o valoare

dată utilizând Ciurul lui Eratostene

– Algoritmul de sortare utilizând vectori de frecvenţă

Suplimentar, pentru studiul intensiv al disciplinei informatică

3.1. Algoritmi de prelucrare a datelor numerice – completare

– Sisteme de numeraţie poziţionale. Reguli de conversie între baza 10 şi

altă bază de numeraţie

5/5

6/6

1/1

2/4

1/1

1/1

1/1

2/4

1/2

/2

15

Domenii de

conținut
Conținuturi

Nr. ore

(orientativ)

MI/Intensiv

– Aritmetică modulară

– Algoritmul de exponenţiere rapidă

3.2. Algoritmi de prelucrare a tablourilor unidimensionale – completare

– Algoritmul de sortare prin metoda bulelor (Bubble sort)

– Algoritmul de sortare prin inserţie (Insertion sort)
– Algoritmul liniar de determinare a unei secvenţe de sumă maximă

(Kadane)

/2

/2

/1

/1

/2

4. Elemente

de limbaj de

programare

– C++

4.1. Fişiere text – caracteristici, operaţii de bază

4.2. Funcţii

– Rolul şi avantajele utilizării funcţiilor

– Sintaxa declaraţiei, definiţiei şi apelului unei funcţii

– Modalităţi de transfer al parametrilor la apel (transfer prin valoare şi
transfer prin referinţă)

– Modalitatea de returnare a unei valori

– Analiză comparativă a variabilelor locale şi variabilelor globale din
punctul de vedere al modului de declarare, clasei de memorare, duratei

de viaţă, accesibilităţii, posibilităţii de iniţializare automată

1/1

10/16

Clasa a X-a

Domenii de

conținut
Conținuturi

Nr. ore

(orientativ)

MI/Intensiv

1. Structuri

de date

1.1. Structuri de date neomogene (tipul struct)

– Caracteristici ale structurilor de date neomogene

– Modalităţi de declarare a unui tip de date pentru reprezentarea unei

structuri de date neomogene şi a variabilelor de acest tip

– Modalitatea de acces la un câmp al unei variabile de tip structură

1.2. Structura de date abstractă Stiva

– Caracteristici ale structurii de date abstracte Stiva

– Implementarea statică a unei stive utilizând tablouri unidimensionale

– Analiza problemelor în scopul identificării necesităţii utilizării unei

stive

1.3. Structura de date abstractă Coada

– Caracteristici ale structurii de date abstracte Coada

– Implementarea statică a unei cozi utilizând tablouri unidimensionale

– Analiza problemelor în scopul identificării necesităţii utilizării unei

cozi

1.4. Tablouri bidimensionale

– Caracteristici ale tablourilor bidimensionale

– Modalităţi de declarare a tablourilor bidimensionale

– Modalitatea de acces la elementele unui tablou bidimensional

– Analiza problemelor în scopul identificării necesităţii utilizării

tablourilor

bidimensionale

– Repere pentru realizarea unor operaţii specifice tablourilor

bidimensionale (parcurgere pe linii, parcurgere pe coloane, bordare)

– Modalităţi de parcurgere a tuturor vecinilor unui element al unui

tablou bidimensional utilizând vectori de direcţie

– Caracteristici ale tablourilor bidimensionale pătratice

– Repere pentru realizarea unor operaţii specifice tablourilor

bidimensionale pătratice (parcurgerea diagonalelor, parcurgerea

zonelor delimitate de diagonale, parcurgere pe chenare concentrice)

1.5. Şiruri de caractere

– Caracteristici ale şirurilor de caractere

3/4

3/5

3/5

8/10

6/6

8/12

16

Domenii de

conținut
Conținuturi

Nr. ore

(orientativ)

MI/Intensiv

– Repere pentru prelucrarea şirurilor de caractere la nivel de caracter

– Repere pentru prelucrarea şirurilor de caractere utilizând funcţiile din

cstring

Suplimentar, pentru studiul intensiv al disciplinei informatică

1.4. Tablouri bidimensionale – completare

– Repere pentru utilizarea sumelor parţiale în tablouri bidimensionale

1.6. Tablouri multidimensionale

– Caracteristici ale tablourilor multidimensionale

– Modalităţi de declarare a tablourilor multidimensionale

– Modalitatea de acces la elementele unui tablou multidimensional

– Repere pentru realizarea parcurgerii tablourilor multidimensionale

/4

/4

2. Algoritmi

fundamentali

2.1. Algoritmi de umplere (fill)

– Caracteristici ale problemelor pentru care se poate aplica un algoritm

de umplere
– Forma generică a unui algoritm de umplere

Suplimentar, pentru studiul intensiv al disciplinei informatică

2.2. Algoritmul lui Lee

– Caracteristici ale problemelor pentru care se poate aplica algoritmul

lui Lee

– Forma generică a algoritmului lui Lee

2.3. Algoritmi simpli de criptare/decriptare a șirurilor de caractere

– caracteristici ale criptării prin metoda cifrului Caesar și repere pentru

aplicarea metodei;

– caracteristici ale criptării prin metoda substituției simple și repere

pentru

aplicarea metodei

– caracteristici ale criptării prin metoda transpoziţiei și repere pentru

aplicarea metodei

4/4

/6

/4

3. Strategii şi

tehnici de

programare

3.1. Metoda Greedy

– Caracteristici ale problemelor pentru care se poate aplica metoda

Greedy

– Forma generică a unui algoritm de tip Greedy

– Repere pentru aplicarea metodei Greedy în rezolvarea problemelor

7/8

4. Elemente

de limbaj de

programare

– C++

4.1. Pointeri

– Caracteristici ale pointerilor

– Modalitatea de declarare a unei variabile de tip pointer

– Operatori care se pot utiliza asupra variabilelor de tip pointer

– Legătura dintre pointeri şi tablouri

4.2. Funcţii recursive

– Caracteristici ale subprogramelor recursive

– Mecanismul de realizare a recursivităţii

– Modalităţi recursive de implementare a unor algoritmi elementari de

prelucrare a cifrelor numerelor, de prelucrare a divizorilor numerelor,

de exponenţiere rapidă, de parcurgere a tablourilor unidimensionale

Suplimentar, pentru studiul intensiv al disciplinei informatică

4.2. Funcţii recursive – completare

– Modalităţi recursive de generare a unor elemente combinatoriale

(secvenţe binare, submulţimi, produs cartezian, permutări,

aranjamente, combinări, partiţii număr, partiţii mulţimi)

2/4

7/8

/8

/10

17

Domenii de

conținut
Conținuturi

Nr. ore

(orientativ)

MI/Intensiv

4.3. Biblioteca STL

– Noţiuni de bază necesare utilizării unor clase predefinite: clase,

obiecte, constructori, iteratori, accesare membri

– Funcţii din biblioteca STL care implementează algoritmi de sortare şi

de căutare

– Clasa vector

– Clasa string

– Clasa stack

– Clasa queue

Clasa a XI-a

Domenii de

conținut
Conținuturi

Nr. ore

(orientativ)

MI/Intensiv

1. Structuri

de date

1.1. Grafuri neorientate şi grafuri orientate

– Terminologie (graf neorientat, graf orientat, lanţ, lanţ elementar,

drum, drum elementar, ciclu, ciclu elementar, circuit, circuit

elementar, grad, graf parţial, subgraf, graf transpus, conexitate, tare

conexitate, arbore, arbore parţial, graf ponderat, arbore parţial de cost

minim, graf orientat aciclic)

– Tipuri speciale de grafuri (graf complet, graf hamiltonian, graf

eulerian, graf bipartit, graf turneu)

– Reprezentarea grafurilor (matrice de adiacenţă, liste de adiacenţă,

lista muchiilor)

– Reprezentarea grafurilor ponderate (matricea costurilor, liste de

adiacenţă cu costuri, lista muchiilor cu costuri)

Suplimentar, pentru studiul intensiv al disciplinei informatică

1.2. Structuri de date liniare alocate dinamic

– Caracteristici ale listelor simplu înlănţuite. Operaţii specifice

– Caracteristici ale listelor simplu înlănţuite circulare

– Caracteristici ale listelor dublu înlănţuite

1.3. Structuri de date arborescente

– Caracteristici ale arborilor cu rădăcină

– Modalităţi de reprezentare a arborilor cu rădăcină (reprezentare cu

referinţe ascendente – vector de taţi, reprezentare cu referinţe

descendente)

– Caracteristici ale arborilor binari cu rădăcină

– Tipuri speciale de arbori binari cu rădăcină (arbore binar plin, arbore

binar complet, arbore binar strict)

– Modalităţi de reprezentare a arborilor binari cu rădăcină

– Parcurgerea arborilor binari cu rădăcină: preordine, inordine,

postordine

– Heap-uri

o Caracteristici ale heap-urilor

o Inserarea unui nod într-un heap

o Combinarea a două heap-uri

o Crearea unui heap prin combinări repetate

o Extragerea elementului minim/maxim din heap

o Analiza complexităţii operaţiilor

– Arbori binari de căutare

o Caracteristici ale arborilor binari de căutare

o Inserarea unui nod într-un arbore binar de căutare

o Ştergerea unui nod dintr-un arbore binar de căutare

6/6

/4

/3

/4

/4

18

Domenii de

conținut
Conținuturi

Nr. ore

(orientativ)

MI/Intensiv

o Analiza complexităţii operaţiilor în cazul cel mai

defavorabil

1.4 Tabele de dispersie (hash)

/2

2. Strategii şi

tehnici de

programare

2.1. Metoda de programare Divide et impera

– Caracteristici ale problemelor pentru care se poate aplica metoda

Divide et impera

– Forma generică a unui algoritm de tip Divide et impera

– Repere pentru aplicarea metodei Divide et impera în rezolvarea

problemelor

2.2. Metoda de programare backtracking

– Caracteristici ale problemelor pentru care se poate aplica metoda

backtracking – varianta elementară
– Forma generică a unui algoritm de tip backtracking elementar

– Repere pentru aplicarea metodei backtracking în variantă elementară

în rezolvarea problemelor
– Caracteristici ale problemelor pentru care se poate aplica metoda

backtracking – varianta în plan

– Forma generică a unui algoritm de tip backtracking în plan

– Repere pentru aplicarea metodei backtracking în plan în rezolvarea

problemelor

Suplimentar, pentru studiul intensiv al disciplinei informatică

2.3 Metoda programării dinamice

– Caracteristici ale problemelor pentru care se poate aplica metoda

programării dinamice

– Etape ale abordării unei probleme prin metoda programării dinamice

– Repere pentru aplicarea metodei programării dinamice în rezolvarea

problemelor

– Tehnici de optimizare a spaţiului de memorie utilizat

– Tehnica memoizării

12/12

16/16

/14

3. Algoritmi

fundamentali

3.1. Algoritmi de sortare care utilizează metoda Divide et Impera

– Algoritmul de sortare prin interclasare (Merge Sort)
3.2. Algoritmi de prelucrare a grafurilor

– Algoritmul de parcurgere a unui graf în adâncime (DFS – Depth
First Search)

– Algoritmul de parcurgere a unui graf în lăţime (BFS – Breadth

First Search).

– Algoritmul de descompunere a unui graf în componente conexe

folosind o metodă de parcurgere
– Algoritmul de determinare a câte unui lanţ/drum de lungime

minimă de la un vârf specificat la fiecare dintre celelalte vârfuri ale

grafului utilizând parcurgerea BFS
– Algoritmul Roy-Warshall de determinare a matricii

drumurilor/lanţurilor dintr-un graf. Descompunerea unui graf în

componente tare-conexe folosind matricea drumurilor

– Algoritmul lui Prim de determinare a unui arbore parţial de cost

minim

– Algoritmul Roy-Floyd care determină pentru oricare două vârfuri

ale unui graf ponderat costul drumului de cost minim

– Algoritmul lui Dijkstra care determină pentru un vârf specificat,

câte un drum de cost minim către fiecare dintre celelalte vârfuri ale

grafului

2/2

2/2

2/2

1/1

1/1

1/1

2/2

1/1

4/4

19

Domenii de

conținut
Conținuturi

Nr. ore

(orientativ)

MI/Intensiv

Suplimentar, pentru studiul intensiv al disciplinei informatică

3.1. Algoritmi de sortare care utilizează metoda Divide et Impera –

completare

– Sortarea rapidă (Quick sort)

3.2. Algoritmi de prelucrare a grafurilor – completare

– Algoritmul de sortare topologică a vârfurilor unui graf orientat

aciclic, utilizând parcurgerea DFS

– Algoritmul lui Kruskal de determinare a unui arbore parţial de cost

minim

– Reprezentarea mulţimilor disjuncte. Algoritmii Union-Find

/2

/2

/2

/2

4. Elemente

de limbaj de
programare

–

C++/Python

4.1. Limbajul de programare Python

– Elemente de bază ale limbajului
o Lucrul în modul linie de comandă

o Utilizarea unui mediu de programare (IDE) pentru lucrul în

limbajul Python
o Convenții de scriere: indentare; denumirea variabilelor, funcțiilor și

claselor; comentarea codului

o Tipuri de date de bază: int, float, bool, str

o Citirea datelor de la tastatură şi afişarea datelor pe ecran

o Operatori aritmetici, logici și de comparație

o Sintaxa structurilor de control: if, elif, else, for, while, break,

continue, pass

o Modalități de tratare a erorilor

o Modalități de citire și scriere utilizând fișiere text

o Biblioteci standard şi biblioteci externe

– Funcții în limbajul Python

o Definirea funcțiilor

o Apelarea funcțiilor

o Returnarea valorilor. Elementul None

o Funcții cu parametri impliciți

– Structurile de date listă şi şir de caractere

o definirea listei ca o structură de date secvențială, eterogenă și

modificabilă

o ⁠prezentarea metodelor uzuale pentru tipul de date listă: append,

insert, remove, sort, reverse, count, index

o ⁠utilizarea operațiilor fundamentale pentru liste: accesarea

elementelor prin index, parcurgerea prin instrucțiuni repetitive,

adăugarea și eliminarea de elemente, concatenarea listelor și

copierea unei liste
o definirea noțiunii de șir de caractere ca secvență imutabilă de

caractere

o ⁠prezentarea operațiilor uzuale pentru șiruri de caractere: find,

replace, split, join, upper, lower

o List comprehension
– Structura de date tuplu

o definirea tuplurilor ca structuri de date secvențiale și imutabile

o ⁠utilizarea indexării pentru accesarea elementelor unui tuplu

o ⁠aplicarea despachetării (unpacking) pentru atribuirea multiplă

de valori

– Structura de date dicționar

o ⁠⁠definirea dicționarelor ca structuri de date bazate pe perechi de

tip cheie-valoare

o ⁠utilizarea cheilor pentru accesarea și modificarea valorilor

dintr-un dicționar

51/89

6/8

6/8

20/25

20

Domenii de

conținut
Conținuturi

Nr. ore

(orientativ)

MI/Intensiv

o aplicarea metodelor specifice dicționarelor (keys, values, items,

get, update) în prelucrări de date

– Structura de date mulțime

o definirea mulțimilor ca structuri de date neordonate ce conțin

elemente unice

o aplicarea operațiilor fundamentale asupra mulțimilor (reuniune,

intersecție, diferență, apartenență)

o utilizarea metodelor specifice mulțimilor (add, remove, union,

intersection, difference) în prelucrări de date

– Tipuri de memorie în Python (mutabilă/imutabilă). Shallow copy şi

deep copy

– Programarea orientată pe obiecte
o Clase și obiecte, câmpuri şi metode

o Constructori şi destructor

o Încapsulare

o Moștenire simplă

– Interfeţe grafice în limbajul Python

Suplimentar, pentru studiul intensiv al disciplinei informatică

4.1. Limbajul Python. Programarea orientată pe obiecte – completare

o Accesul la membrii unei clase (public, private, protected)

o Moștenire multiplă

o Supradefinirea metodelor şi a operatorilor. Polimorfism

4.2. Limbajul C++. Biblioteca STL

– Clasele set

– Clasele map

– Clasa priority_queue

6/12

14/22

/6

/6

Clasa a XII-a

Domenii de

conținut
Conținuturi

Nr. ore

(orientativ)

MI/Intensiv

1. Elemente

de bază în

Inteligența

Artificială

1.1. Concepte de bază ale Inteligenţei Artificiale

– Domeniile Inteligenței Artificiale

– Învățare Automată – concepte de bază. Tipuri de învăţare și tipuri de

probleme asociate

o Învățare nesupervizată. Probleme de tip clusterizare. Algoritmul K-
means

o Învățare supervizată. Probleme de tip regresie și clasificare.

Algoritmul de regresie liniară. Arborele de decizie. Algoritmul

KNN (K-Nearest Neighbors)

o Introducere în rețele neurale – concepte de bază. Modelul

neuronului artificial. Rețele perceptron – caracteristicile modelului

și algoritmul de învățare

– Implicații etice și sociale ale Inteligenței Artificiale

o Pericole și riscuri asociate IA (bias, confidențialitate, securitate,

autonomie)

o Avantaje şi riscuri ale IA generative

o Impactul asupra pieței muncii și carierei

o Aspecte etice și responsabilitatea utilizării IA

o Reglementări și bune practici

22/28

2. Structuri

de date

2.1. Modelul conceptual al unei activităţi din lumea reală

– Analiza unei activităţi din lumea reală în scopul identificării datelor

relevante şi a relaţiilor dintre acestea

18/24

21

Domenii de

conținut
Conținuturi

Nr. ore

(orientativ)

MI/Intensiv

– Entităţi şi instanţe

– Atribute. Opţionalitate

– Identificatori unici

– Relaţii între entităţi. Cardinalitate şi opţionalitate

o Clasificarea relaţiilor în funcţie de cardinalitate (1:1, 1:M, M:M)

o Transferabilitate

o Relaţii recursive

– Convenţii de reprezentare în diagrama ERD a entităţilor, atributelor,

identificatorilor unici, relaţiilor

– Rezolvarea relaţiilor M:M

– Normalizarea datelor: 1NF, 2NF, 3NF

– Transformarea modelului conceptual în model fizic
o Tabele, coloane, cheie primară, chei străine (externe), chei unice,

constrângeri

o Convenţii de descriere a modelului fizic

– Modele de baze de date

Suplimentar, pentru studiul intensiv al disciplinei informatică

2.1. Modelul conceptual al unei activităţi din lumea reală – completare

– Arce

– Subtipuri

– Modelarea datelor din punct de vedere istoric

/8

3.

Dezvoltarea

aplicațiilor

web

Suplimentar, pentru studiul intensiv al disciplinei informatică

3.1 Elemente de dezvoltare a aplicațiilor web care utilizează baze de date

– Concepte de bază ale dezvoltării aplicațiilor web

o Analiza unei activități din lumea reală pentru identificare nevoilor

de gestionare

o Diferența între backend și frontend

o Formatul de text JSON

– Elemente de Frontend

o Noțiunea de interfață grafică

o Alcătuirea schemelor de experiența utilizatorului (user experience
și user stories)

o Proiectarea elementelor vizuale în concordanță cu schemele

alcătuite

o Implementarea unei interfețe grafice adecvate în limbajul Python

– Elemente de Backend

o Identificarea funcționalităților necesare aplicației

o Implementarea eficientă a acestor funcționalități în limbajul
Python

o Gestionarea datelor aplicației cu ajutorul unei baze de date

o Integrarea inteligenței artificiale într-o aplicație

/30

4. Elemente

de limbaj de

programare

4.1. Biblioteci Python pentru Inteligenţa artificială

– Analizarea datelor în Python. Biblioteca pandas

– citirea și scrierea seturilor de date în formate uzuale (CSV, JSON)

– accesarea și modificarea elementelor, coloanelor și rândurilor (iloc,

loc, at, iat)

– operații de bază cu DataFrame-uri: selectare, filtrare, sortare,

adăugare și ștergere de coloane sau rânduri

– calculul indicatorilor statistici pentru variabilele numerice (minimul,

maximul, media, mediana, abaterea standard, varianța)

– calculul corelațiilor dintre variabile

– detectarea valorilor extreme

– normalizarea și standardizarea datelor

12/28

22

Domenii de

conținut
Conținuturi

Nr. ore

(orientativ)

MI/Intensiv

– Vizualizarea datelor în Python. Bibliotecile Matplotlib și Seaborn

– trasarea graficului unei funcții matematice

– realizarea diagramelor simple (liniare, cu bare, circulare)

– reprezentarea vizuală a distribuțiilor prin histograme

– adăugarea de etichete, legendă și titlu pentru claritatea graficelor

– afișarea și exportarea graficelor

– Algoritmi pentru învăţare automată. Biblioteca scikit-learn

– împărțirea datelor în seturi de antrenare și testare (train_test_split)

– scalarea și transformarea datelor cu StandardScaler, MinMaxScaler,

LabelEncoder, OneHotEncoder
– crearea modelelor de învățare supervizată și nesupervizată din

biblioteca scikit-learn
– antrenarea și testarea modelelor (fit, predict, score)

– evaluarea performanței modelelor

4.2. Limbajul SQL

– Transformarea modelului fizic într-o bază de date relaţională

– Crearea tabelelor (CREATE TABLE)

– Modificarea structurii unei tabele (ALTER TABLE)

– Ștergerea tabelelor (DROP TABLE)

– Definirea cheilor primare și externe, constrângeri (PRIMARY KEY,

FOREIGN KEY, UNIQUE, CHECK)

– Manipularea datelor (DML)

– Inserarea de date (INSERT)

– Modificarea datelor existente (UPDATE)

– Ștergerea datelor (DELETE)

– Interogări simple. Selecţie, proiecţie, ordonare

– Expresii și funcții

– Expresii aritmetice și logice

– Funcții pe rânduri individuale (single-row): text, numerice, date

– Subinterogări în clauza WHERE

– Interogări avansate (JOIN)

Suplimentar, pentru studiul intensiv al disciplinei informatică

4.1. Biblioteci Python pentru Inteligenţa artificială – completare

– Elemente de algebră liniară. Biblioteca NumPy. Operații cu tablouri în

NumPy

4.2. Limbajul SQL – completare

– Agregare și grupare

– Funcții de agregare (multiple row): COUNT, SUM, AVG, MIN,

MAX

– Gruparea datelor (GROUP BY)

– Filtrarea grupurilor (HAVING)

– Subinterogări corelate

– Crearea şi utilizarea secvenţelor

– Indecşi şi sinonime

– Gestionarea drepturilor de acces la baza de date

– Gestionarea tranzacţiilor

4.3. Biblioteci Python pentru Dezvoltarea Aplicațiilor Web

– Interacțiunea cu o bază de date. Biblioteca sqlite

– crearea și conectarea la o bază de date SQLite

– executarea interogărilor SQL (SELECT, INSERT, UPDATE,

DELETE) din Python

– manipularea rezultatelor interogărilor și gestionarea erorilor

– utilizarea operațiilor CRUD pentru persistarea datelor

– integrarea bazei de date într-o aplicație web

20/28

/8

/16

23

Domenii de

conținut
Conținuturi

Nr. ore

(orientativ)

MI/Intensiv

– Adăugarea unei interfețe grafice. Biblioteca gradio

– crearea interfețelor web interactive pentru aplicații Python

– conectarea funcțiilor Python care interacționează cu baza de date la

interfața Gradio

– operații tipice: adăugarea de date noi, afișarea datelor existente,

actualizarea sau ștergerea unor înregistrări, folosind interfața web

5.

Dezvoltarea

profesională

în domeniul

IT

5.1. Repere pentru dezvoltarea profesională în domeniul IT și

managementul proiectelor

– Cariere în IT. Conexiunea dintre industrie şi informatica studiată în

liceu

– Principii ale lucrului în echipă

– Managementul unui proiect în domeniul IT
o Rolul managementului de proiect

o Etapele unui proiect (ciclul de viață)

o Roluri în managementul de proiect
o Instrumente și metode

– Reguli pentru susţinerea unei prezentări de proiect

4/8

	Necesitatea unei fundamentări prealabile
	Clasa a IX-a
	Clasa a X-a
	Clasa a XI-a

