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Examenul național de bacalaureat 2026 

Proba E.c) 

Matematică M_tehnologic 

BAREM DE EVALUARE ȘI DE NOTARE 

Simulare  

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările 

profesionale; profilul tehnic, toate calificările profesionale 

 • Pentru orice soluţie corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător. 

 • Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parţiale, în 

limitele punctajului indicat în barem. 

 • Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat 

pentru lucrare.  

 

SUBIECTUL I                                                                                                                                     (30 de puncte) 

1. 1 + 2 ∙ (
1

2
+  

1

3
) + 

4

3
= 1 + 2⸱

5

6
 + 

4

3
= 1 +  

5

3
+  

4

3
= 

= 
12

3
 = 4 

3p 

 

2p 

2. 𝑓(1) = 1, 𝑓(𝑎) = 2𝑎 − 1, pentru orice număr real a 

2a – 1 =  a + 1, de unde obținem  a = 2 

2p 

3p 

3. 3𝑥−1 = 32−2𝑥 , de unde obținem 𝑥 − 1 = 2 − 2𝑥 

x = 1 

3p 

2p 

4. 𝑥 +  
20

100
 ⸱ 𝑥 = 960 lei, unde x este prețul înainte de scumpire 

x = 800 de lei 

3p 

2p 

5. 𝐴𝐵 = 4√2, 𝐴𝐶 = 4√2, 𝐵𝐶 = 8 

𝐴𝐵 = 𝐴𝐶 ș𝑖 𝐴𝐵2 +  𝐴𝐶2 =  𝐵𝐶2, deci triunghiul ABC este dreptunghic isoscel 

3p 

2p 

6. 
sin 30° =  

1

2
, cos 45° =  

√2

2
 , 𝑡𝑔 45° = 1 

2 ⸱ 
1

2
  − 4 ⸱ 

2

4
+ 1 = 1 – 2 + 1 = 0 

3p 

 

2p 

 

SUBIECTUL al II- lea                                                                                                                       (30 de puncte) 

1.a) 𝐴(2) =  (
1 −1
1 3

)  ⇒ det(𝐴(2)) =  |
1 −1
1 3

| = 1⸱ 3 − (−1)⸱ 1 = 

= 3 + 1 = 4 

3p 

 

2p 

b) 𝐴(−2) =  (
−3 −1
1 −1

) , 𝐴(2) ⸱ 𝐴 (−2) =  (
−4 0
0 −4

) , 𝑎𝐼2 =  (
𝑎 0
0 𝑎

) 

 

𝐴(2) ⸱ 𝐴 (−2) =  𝑎𝐼2  ⇔  (
−4 0
0 −4

) =  (
𝑎 0
0 𝑎

), de unde obținem a = − 4 

 

3p 

 

 

2p 

c) 𝐴(𝑥) + 𝑥𝐼2 =  (
𝑥 − 1 −1

1 𝑥 + 1
) + (

𝑥 0
0 𝑥

) =  (
2𝑥 − 1 −1

1 2𝑥 + 1
)  

 

det(𝐴(𝑥) + 𝑥𝐼2) = 4𝑥2  ≥ 0, pentru orice număr real x 

2p 

 

3p 

2.a) 1 ∘ 3 = 1 ⸱ 3 − 3 ⸱ 1 − 3 ⸱ 3 + 12 = 

= 3 − 3 − 9 + 12 = 3 

3p 

2p 

b) 𝑥 ∘ 4 = 𝑥 ∙ 4 − 3 ∙ 𝑥 − 3 ∙ 4 + 12 = 4𝑥 −  3𝑥 − 12 + 12 = 𝑥, pentru orice 𝑥 număr real 2p 
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4 ∘ 𝑥 = 4 ⸱ 𝑥 − 3 ⸱ 4 − 3 ⸱ 𝑥 + 12 = 4𝑥 − 12 − 3𝑥 + 12 = x, pentru orice 𝑥 număr real, 

 deci e = 4 este elementul neutru al legii de compoziție “∘” 

3p 

c) (𝑛 − 3)  ∘ (𝑛 + 3) = (𝑛 − 3) ∙ (𝑛 + 3) − 3(𝑛 − 3) − 3(𝑛 + 3) + 12 =  𝑛2 − 6𝑛 + 3, pentru 

orice număr natural n 

𝑛2 − 6𝑛 + 3 ≤  −2 ⇔  𝑛2 − 6𝑛 + 5 ≤ 0 și , cum 𝑛 este număr natural , obținem n = 1, 

 n = 2, n = 3, n = 4 și n = 5 . 

 

2p 

 

3p 

 

SUBIECTUL al III-lea                                                                                                                       (30 de puncte) 

1.a) 
𝑓′(𝑥) = 16𝑥 −  

1

𝑥
=  

= 
16 𝑥2−1 

𝑥
=  

(4𝑥−1 )(4𝑥+1)

𝑥
 , 𝑥 ∈ (0, +∞) 

3p 

 

2p 

b) 𝑓(1) = 8, 𝑓′(1) = 15 

Ecuația tangentei este: 𝑦 − 𝑓(1) = 𝑓′(1)(𝑥 − 1), adică y = 15𝑥 − 7 

2p 

3p 

c) 𝑓′(𝑥) = 0 ⇔ 𝑥 =  
1

4
 ; 𝑓’(x)≤ 0, pentru orice 𝑥 ∈ (0,

1

4
]  ⇒ 𝑓 este descrecătoare pe (0,

1

4
]  

𝑓′(𝑥) ≥ 0, pentru orice 𝑥 ∈ [ 
1

4
, + ∞) ⇒ 𝑓 este crescătoare pe [ 

1

4
, +∞) 

3p 

 

2p 

2.a) ∫ (𝑓(𝑥) + 3𝑥2 − 2𝑥)
2

0
𝑑𝑥 =  ∫ 4𝑥32

0
𝑑𝑥 =  𝑥4│

2
0

 = 

= 24 − 04 = 16 

3p 

2p 

b) 
𝐹(𝑥) =  ∫ 𝑓(𝑥)𝑑𝑥 =  𝑥4 −  𝑥3 +  𝑥2 + 𝐶 

𝐹(1) = 1 + 𝐶 ⇒ 𝐶 = 2025, de unde 𝐹(𝑥) =  𝑥4 − 𝑥3 + 𝑥2 + 2025 

2p 

 

3p 

c) ∫
𝑓(𝑥)

𝑥

𝑛

0
𝑑𝑥 =  ∫ (4𝑥2 − 3𝑥 + 2)𝑑𝑥

𝑛

0
= (

4𝑥3

3
−

3𝑥2

2
+ 2𝑥) │

𝑛
0

 = 
4𝑛3

3
  − 

3𝑛2

2
+ 2𝑛.  

 

Deci 
4𝑛3

3
 − 

3𝑛2

2
+ 2𝑛 = 

4𝑛3

3
− 2 ⇔ −3𝑛2 + 4𝑛 + 4 = 0, de unde obținem 𝑛 =  −

2

3
 , care nu 

convine; 𝑛 = 2, care convine 

 

2p 

 

 

3p 

 

 

 


